967 resultados para Intracellular


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The European Society for the study of Chlamydia, Coxiella, Anaplasma and Rickettsia (ESCCAR) held his triennial international meeting in Lausanne. This meeting gathered 165 scientists from 28 countries and all 5 continents, allowing efficient networking and major scientific exchanges. Topics covered include molecular and cellular microbiology, genomics, as well as epidemiology, veterinary and human medicine. Several breakthroughs have been revealed at the meeting, such as (i) the presence of CRISPR (the "prokaryotic immune system") in chlamydiae, (ii) an Anaplasma effector involved in host chromatin remodelling, (iii) the polarity of the type III secretion system of chlamydiae during the entry process revealed by cryo-electron tomography. Moreover, the ESCCAR meeting was a unique opportunity to be exposed to cutting-edge science and to listen to comprehensive talks on current hot topics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the influence of glutathione (GSH) on cellular effects of nitric oxide (NO) formation, human colon adenocarcinoma cells were transfected with a vector allowing controlled expression of inducible nitric oxide synthase (iNOS). Protein levels of oxidative stress-sensitive heme oxygenase-1 (HO-1) were analyzed in the presence or absence of GSH depletion using L-buthionine-[S,R]-sulfoximine and iNOS induction. While no effect was observed in the presence of iNOS activity alone, a synergistic effect on HO-1 expression was observed in the presence of iNOS expression and GSH depletion. This effect was prevented by addition of N-methyl-L-arginine. Therefore, targeting of endogenous NO may be modulated by intracellular GSH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation of the nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome initiates an inflammatory response, which is associated with host defense against pathogens and the progression of chronic inflammatory diseases such as gout and atherosclerosis. The NLRP3 inflammasome mediates caspase-1 activation and subsequent IL-1β processing in response to various stimuli, including extracellular ATP, although the roles of intracellular ATP (iATP) in NLRP3 activation remain unclear. In this study, we found that in activated macrophages artificial reduction of iATP by 2-deoxyglucose, a glycolysis inhibitor, caused mitochondrial membrane depolarization, leading to IL-1β secretion via NLRP3 and caspase-1 activation. Additionally, the NLRP3 activators nigericin and monosodium urate crystals lowered iATP through K(+)- and Ca(2+)-mediated mitochondrial dysfunction, suggesting a feedback loop between iATP loss and lowering of mitochondrial membrane potential. These results demonstrate the fundamental roles of iATP in the maintenance of mitochondrial function and regulation of IL-1β secretion, and they suggest that maintenance of the intracellular ATP pools could be a strategy for countering NLRP3-mediated inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlamydiales possess a minimal but functional peptidoglycan precursor biosynthetic and remodeling pathway involved in the assembly of the division septum by an atypical cytokinetic machine and cryptic or modified peptidoglycan-like structure (PGLS). How this reduced cytokinetic machine collectively coordinates the invagination of the envelope has not yet been explored in Chlamydiales. In other Gram-negative bacteria, peptidoglycan provides anchor points that connect the outer membrane to the peptidoglycan during constriction using the Pal-Tol complex. Purifying PGLS and associated proteins from the chlamydial pathogen Waddlia chondrophila, we unearthed the Pal protein as a peptidoglycan-binding protein that localizes to the chlamydial division septum along with other components of the Pal-Tol complex. Together, our PGLS characterization and peptidoglycan-binding assays support the notion that diaminopimelic acid is an important determinant recruiting Pal to the division plane to coordinate the invagination of all envelope layers with the conserved Pal-Tol complex, even during osmotically protected intracellular growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obligate or facultative intracellular bacteria are fastidious organisms that do not or poorly grow on conventional culture media. Some of them may be the cause of frequent and potentially severe infections, such as tuberculosis (Myco- bacterium tuberculosis), community-acquired respiratory infections (Legionella spp., Mycoplasma pneumoniae, Chlamydia pneumoniae) or blood culture-negative endocarditis (Coxiella burnetii, Bartonella spp., Tropheryma whipplei). The objective of this paper is to provide a comprehensive summary of the available and recommended diagnostic tests for the detection of these fastidious organisms in clinical practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding nanomaterial interactions within cells is of increasing importance for assessing their toxicity and cellular transport. Here, we developed nanovesicles containing bioactive cationic lysine-based amphiphiles, and assessed whether these cationic compounds increase the likelihood of intracellular delivery and modulate toxicity. We found different cytotoxic responses among the formulations, depending on surfactant, cell line and endpoint assayed. The induction of mitochondrial dysfunction, oxidative stress and apoptosis were the general mechanisms underlying cytotoxicity. Fluorescence microscopy analysis demonstrated that nanovesicles were internalized by HeLa cells, and evidenced that their ability to release endocytosed materials into cell cytoplasm depends on the structural parameters of amphiphiles. The cationic charge position and hydrophobicity of surfactants determine the nanovesicle interactions within the cell and, thus, the resulting toxicity and intracellular behavior after cell uptake of the nanomaterial. The insights into some toxicity mechanisms of these new nanomaterials contribute to reducing the uncertainty surrounding their potential health hazards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoclasts are cells responsible for bone resorption. These cells undergo extensive membrane re-organization during their polarization for bone resorption and form four distinct membrane domains, namely the ruffled border, the basolateral membrane, the sealing zone and the functional secretory domain. The endocytic/biosynthetic pathway and transcytotic route(s) are important for the resorption process, since the endocytic/biosynthetic pathway brings the specific vesicles to the ruffled border whereas the transcytotic flow is believed to transport the degraded bone matrix away from the resorption lacuna to the functional secretory domain. In the present study, we found a new transcytotic route from the functional secretory domain to the ruffled border, which may compensate membrane loss from the ruffled border during the resorption process. We also found that lipid rafts are essential for the ruffled border-targeted late endosomal pathways. A small GTP-binding protein, Rab7, has earlier been shown to regulate the late steps of the endocytic pathway. In bone-resorbing osteoclasts it is involved in the formation of the ruffled border, which displays several features of late endosomal membranes. Here we discovered a new Rab7-interacting protein, Rac1, which is another small GTP-binding protein and binds to the GTP-form of Rab7 in vitro. We demonstrated further that Rab7 colocalizes with Rac1 at the fusion zone of the ruffled border in bone-resorbing osteoclasts. In other cell types, such as fibroblast-like cells, this colocalization is mainly perinuclear. Because Rac1 is known to control the actin cytoskeleton through its effectors, we suggest that the Rab7-Rac1 interaction may mediate late endosomal transport between microtubules and microfilaments, thus enabling endosomal vesicles to switch tracks from microtubules to microfilaments before their fusion to the ruffled border. We then studied the role of Rab-Rac1 interaction in the slow recycling pathway. We revealed that Rac1 also binds directly to Rab11 and to some other but not all Rab-proteins, suggesting that Rab-Rac1 interaction could be a general regulatory mechanism to direct the intracellular vesicles from microtubule mediated transport to actin filament mediated transport and vice versa. On the basis of our results we thus propose a new hypothesis for these GTPases in the regulation of intracellular membrane flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review considers the importance of compartmentation in the regulation of carbohydrate metabolism in leaves. We draw particular attention to the role of the vacuole as a site for storage of soluble sugars based on sucrose, and discuss briefly their characteristic metabolism. We also point out inconsistencies between the observed properties of vacuoles and the behaviour in vitro of the enzymes of fructan biosynthesis that do not support the hypothesis that the vacuole is the site of synthesis as well as of storage. We also consider compartmentation of carbohydrate metabolism between different cell types, using mainly our studies on leaves of temperate C3 gramineae. Here we present evidence of significant differences in carbon metabolism between epidermis, mesophyll, bundle sheath and vasculature based upon both single-cell sampling and immunolocalisation. The implications of these differences for the control of metabolism in leaves are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellular immune responses are a critical part of the host's defense against intracellular bacterial infections. Immunity to Brucella abortus crucially depends on antigen-specific T cell-mediated activation of macrophages, which are the major effectors of cell-mediated killing of this organism. T lymphocytes that proliferate in response to B. abortus were characterized for phenotype and cytokine activity. Human, murine, and bovine T lymphocytes exhibited a type 1 cytokine profile, suggesting an analogous immune response in these different hosts. In vivo protection afforded by a particular cell type is dependent on the antigen presented and the mechanism of antigen presentation. Studies using MHC class I and class II knockout mice infected with B. abortus have demonstrated that protective immunity to brucellosis is especially dependent on CD8+ T cells. To target MHC class I presentation we transfected ex vivo a murine macrophage cell line with B. abortus genes and adoptively transferred them to BALB/c mice. These transgenic macrophage clones induced partial protection in mice against experimental brucellosis. Knowing the cells required for protection, vaccines can be designed to activate the protective T cell subset. Lastly, as a new strategy for priming a specific class I-restricted T cell response in vivo, we used genetic immunization by particle bombardment-mediated gene transfer

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toxoplasma gondii and Trypanosoma cruzi are intracellular parasites which, as part of their life cycle, induce a potent cell-mediated immunity (CMI) maintained by Th1 lymphocytes and IFN-g. In both cases, induction of a strong CMI is thought to protect the host against rapid parasite multiplication and consequent pathology and lethality during the acute phase of infection. However, the parasitic infection is not eliminated by the immune system and the vertebrate host serves as a parasite reservoir. In contrast, Leishmania sp, which is a slow growing parasite, appears to evade induction of CMI during early stages of infection as a strategy for surviving in a hostile environment (i.e., inside the macrophages which are their obligatory niche in the vertebrate host). Recent reports show that the initiation of IL-12 synthesis by macrophages during these parasitic infections is a key event in regulating CMI and disease outcome. The studies reviewed here indicate that activation/inhibition of distinct signaling pathways and certain macrophage functions by intracellular protozoa are important events in inducing/modulating the immune response of their vertebrate hosts, allowing parasite and host survival and therefore maintaining parasite life cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactive arthritis (ReA) is an inflammatory joint disease triggered by certain bacterial infections e.g. gastroenteritis caused by Salmonella. ReA is strongly associated to HLA-B27. However, the mechanism behind this association is unknown but it is suggested that the bacteria or bacterial compartments persist in the body. In this study, it was investigated whether the intracellular signaling is altered in HLA-B27- transfected U937 monocytic macrophages. Moreover, the contribution of HLA–B27 heavy chain (HC) misfolding was of interest. The study revealed that p38 activity plays a crucial role in controlling intracellular Salmonella Enteritidis in U937 cells. The replication of intracellular bacteria was dependent on p38 kinase and the activity of p38 was dysregulated in HLA-B27- transfected cells expressing misfolding heavy chains (HCs). Also the double-stranded RNA -dependent kinase (PKR) that modifies p38 signaling was overexpressed and hypophosphorylated upon infection and lipopolysaccharide stimulation. The expression of CCAAT enhancer binding protein beta (C/EBPβ) was found to be increased after infection and stimulation. Increased amount of full length human antigen R (HuR), disturbed HuR cleavage and reduced dependence on PKR after infection were observed. All the findings were linked to HLA-B27 HCs containing misfoldingassociated glutamic acid 45 (Glu45) at the peptide binding groove. The results indicate that the expression of HLA-B27 modulates the intracellular environment of U937 monocytic macrophages by altering signaling. This phenomenon is at least partially associated to the HLA-B27 misfolding. These observations offer a novel explanation how HLA-B27 may modulate inflammatory response induced by ReA-triggering bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cells possess multiple intracellular Ca2+-releasing systems. Sea urchin egg homogenates are a well-established model to study intracellular Ca2+ release. In the present study the mechanism of interaction between three intracellular Ca2+ pools, namely the nicotinic acid adenine dinucleotide phosphate (NAADP), the cyclic ADP-ribose (cADPR) and the inositol 1',4',5'-trisphosphate (IP3)-regulated Ca2+ stores, is explored. The data indicate that the NAADP Ca2+ pool could be used to sensitize the cADPR system. In contrast, the IP3 pool was not affected by the Ca2+ released by NAADP. The mechanism of potentiation of the cADPR-induced Ca2+ release, promoted by Ca2+ released from the NAADP pool, is mediated by the mechanism of Ca2+-induced Ca2+ release. These data raise the possibility that the NAADP Ca2+ store may have a role as a regulator of the cellular sensitivity to cADPR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toxoplasma gondii, Leishmania amazonensis and Trypanosoma cruzi are obligate intracellular parasites that multiply until lysis of host cells. The present study was undertaken to evaluate the effect of hydroxyurea (an inhibitor of cell division at the G1/S phase) on the multiplication of L. amazonensis, T. gondii, and T. cruzi in infected host cells. Infected cells were treated with hydroxyurea (4 mM) for 48 h. Hydroxyurea arrested intracellular multiplication of all infective forms of the parasites tested. In treated cultures, the percent of infected host cells decreased (50-97%) and most intracellular parasites were eliminated. Ultrastructural observations showed no morphologic change in host cells while intracellular parasites presented drastic morphologic alterations or disruption. The results strongly suggest that hydroxyurea was able to interfere with the multiplication of intracellular parasites, leading to an irreversible morphological effect on L. amazonensis, T. gondii, and T. cruzi without affecting the host cells.