994 resultados para Intra-operator variability
Resumo:
Dissertação apresentada para a obtenção do grau de mestre em Ciências da Educação - área de Supervisão e Orientação Pegagógica
Resumo:
Freshwater Bay (FWB), Washington did not undergo significant erosion of its shoreline after the construction of the Elwha and Glines Canyon Dams, unlike the shoreline east of Angeles Point (the Elwha River’s lobate delta). In this paper I compare the wave energy density in the western and eastern ends of the Strait of Juan de Fuca with the wave energy density at the Elwha River delta. This indicates seasonal high- and low-energy regimes in the energy density data. I group multi-year surveys of four cross-shore transects in FWB along this seasonal divide and search for seasonal trends in profile on the foreshore. After documenting changes in elevation at specific datums on the foreshore, I compare digital images of one datum to determine the particle sizes that are transported during deposition and scour events on this section of the FWB foreshore. Repeat surveys of four cross-shore transects over a five-year period indicate a highly mobile slope break between the upper foreshore and the low-tide delta. Post-2011, profiles in eastern FWB record deposition in the landward portion of the low-tide terrace and also in the upper intertidal. Western FWB experiences transient deposition on the low-tide terrace and high intra-annual variability in beach profile. Profile elevation at the slope break in western FWB can vary 0.5 m in the course of weeks. Changes in surface sediment that range from sand to cobble are co-incident with these changes in elevation. High sediment mobility and profile variation are inconsistent with shoreline stability and decreased sediment from the presumed source on the Elwha River delta.
Resumo:
The waveform and scalp distribution of the visual evoked potentials elicited by stimuli in the foveal and parafoveal regions have been investigated in a group of normal humans using a 16-channel `brain mapping' system. The waveform and topography of the responses to pattern onset and pattern reversal stimulation were investigated, using 4 x 4o full field and 4 x 2o lateral and altitudinal half-field stimuli. The responses were composed of several successive peaks which are in some respects consistent with those demonstrated by other workers using larger field sizes. The differences in the behaviour of these components with respect to the position of the stimulus in the visual field were suggestive of origins in different areas of the visual cortex and/or different visual mechanism. Of particular interest were the major early positive components `P90' and `P95' of the responses to pattern onset and pattern reversal stimulation respectively. More detailed exploration of the behaviour of these major early positive components was carried out using `M-scaled' stimuli selected to activate one square centimetre patches of striate cortex and associated extrastriate re-projections, positioned at different points in the foveal and parafoveal area of the visual field. The inter- and intra-subject variability in amplitude and localisation of the signals elicited by these targets was considered to be a reflection of the individual variations in relationship of visual field projections with the pattern of gyri and fissures on the proximal surface of the occipital lobe. The behaviour of component P90 of the onset response is consistent with a lateral origin in extrastriate visual cortex; that of P95 of the pattern reversal response is consistent in some respects with a striate cortical origin, but in others with a partial origin in extrastriate cortex.
Resumo:
Purpose: To assess the inter and intra observer variability of subjective grading of the retinal arterio-venous ratio (AVR) using a visual grading and to compare the subjectively derived grades to an objective method using a semi-automated computer program. Methods: Following intraocular pressure and blood pressure measurements all subjects underwent dilated fundus photography. 86 monochromatic retinal images with the optic nerve head centred (52 healthy volunteers) were obtained using a Zeiss FF450+ fundus camera. Arterio-venous ratios (AVR), central retinal artery equivalent (CRAE) and central retinal vein equivalent (CRVE) were calculated on three separate occasions by one single observer semi-automatically using the software VesselMap (ImedosSystems, Jena, Germany). Following the automated grading, three examiners graded the AVR visually on three separate occasions in order to assess their agreement. Results: Reproducibility of the semi-automatic parameters was excellent (ICCs: 0.97 (CRAE); 0.985 (CRVE) and 0.952 (AVR)). However, visual grading of AVR showed inter grader differences as well as discrepancies between subjectively derived and objectively calculated AVR (all p < 0.000001). Conclusion: Grader education and experience leads to inter-grader differences but more importantly, subjective grading is not capable to pick up subtle differences across healthy individuals and does not represent true AVR when compared with an objective assessment method. Technology advancements mean we no longer rely on opthalmoscopic evaluation but can capture and store fundus images with retinal cameras, enabling us to measure vessel calibre more accurately compared to visual estimation; hence it should be integrated in optometric practise for improved accuracy and reliability of clinical assessments of retinal vessel calibres. © 2014 Spanish General Council of Optometry.
Resumo:
The aims of this thesis were to investigate the neuropsychological, neurophysiological, and cognitive contributors to mobility changes with increasing age. In a series of studies with adults aged 45-88 years, unsafe pedestrian behaviour and falls were investigated in relation to i) cognitive functions (including response time variability, executive function, and visual attention tests), ii) mobility assessments (including gait and balance and using motion capture cameras), iii) motor initiation and pedestrian road crossing behavior (using a simulated pedestrian road scene), iv) neuronal and functional brain changes (using a computer based crossing task with magnetoencephalography), and v) quality of life questionnaires (including fear of falling and restricted range of travel). Older adults are more likely to be fatally injured at the far-side of the road compared to the near-side of the road, however, the underlying mobility and cognitive processes related to lane-specific (i.e. near-side or far-side) pedestrian crossing errors in older adults is currently unknown. The first study explored cognitive, motor initiation, and mobility predictors of unsafe pedestrian crossing behaviours. The purpose of the first study (Chapter 2) was to determine whether collisions at the near-side and far-side would be differentially predicted by mobility indices (such as walking speed and postural sway), motor initiation, and cognitive function (including spatial planning, visual attention, and within participant variability) with increasing age. The results suggest that near-side unsafe pedestrian crossing errors are related to processing speed, whereas far-side errors are related to spatial planning difficulties. Both near-side and far-side crossing errors were related to walking speed and motor initiation measures (specifically motor initiation variability). The salient mobility predictors of unsafe pedestrian crossings determined in the above study were examined in Chapter 3 in conjunction with the presence of a history of falls. The purpose of this study was to determine the extent to which walking speed (indicated as a salient predictor of unsafe crossings and start-up delay in Chapter 2), and previous falls can be predicted and explained by age-related changes in mobility and cognitive function changes (specifically within participant variability and spatial ability). 53.2% of walking speed variance was found to be predicted by self-rated mobility score, sit-to-stand time, motor initiation, and within participant variability. Although a significant model was not found to predict fall history variance, postural sway and attentional set shifting ability was found to be strongly related to the occurrence of falls within the last year. Next in Chapter 4, unsafe pedestrian crossing behaviour and pedestrian predictors (both mobility and cognitive measures) from Chapter 2 were explored in terms of increasing hemispheric laterality of attentional functions and inter-hemispheric oscillatory beta power changes associated with increasing age. Elevated beta (15-35 Hz) power in the motor cortex prior to movement, and reduced beta power post-movement has been linked to age-related changes in mobility. In addition, increasing recruitment of both hemispheres has been shown to occur and be beneficial to perform similarly to younger adults in cognitive tasks (Cabeza, Anderson, Locantore, & McIntosh, 2002). It has been hypothesised that changes in hemispheric neural beta power may explain the presence of more pedestrian errors at the farside of the road in older adults. The purpose of the study was to determine whether changes in age-related cortical oscillatory beta power and hemispheric laterality are linked to unsafe pedestrian behaviour in older adults. Results indicated that pedestrian errors at the near-side are linked to hemispheric bilateralisation, and neural overcompensation post-movement, 4 whereas far-side unsafe errors are linked to not employing neural compensation methods (hemispheric bilateralisation). Finally, in Chapter 5, fear of falling, life space mobility, and quality of life in old age were examined to determine their relationships with cognition, mobility (including fall history and pedestrian behaviour), and motor initiation. In addition to death and injury, mobility decline (such as pedestrian errors in Chapter 2, and falls in Chapter 3) and cognition can negatively affect quality of life and result in activity avoidance. Further, number of falls in Chapter 3 was not significantly linked to mobility and cognition alone, and may be further explained by a fear of falling. The objective of the above study (Study 2, Chapter 3) was to determine the role of mobility and cognition on fear of falling and life space mobility, and the impact on quality of life measures. Results indicated that missing safe pedestrian crossing gaps (potentially indicating crossing anxiety) and mobility decline were consistent predictors of fear of falling, reduced life space mobility, and quality of life variance. Social community (total number of close family and friends) was also linked to life space mobility and quality of life. Lower cognitive functions (particularly processing speed and reaction time) were found to predict variance in fear of falling and quality of life in old age. Overall, the findings indicated that mobility decline (particularly walking speed or walking difficulty), processing speed, and intra-individual variability in attention (including motor initiation variability) are salient predictors of participant safety (mainly pedestrian crossing errors) and wellbeing with increasing age. More research is required to produce a significant model to explain the number of falls.
Resumo:
Efforts to rehydrate and restore surface water flow in karst wetlands can have unintended consequences, as these highly conductive and heterogeneous aquifers create a close connection between groundwater and surface water. Recently, hydrologic restoration efforts in the karstic Taylor Slough portion of the Everglades has changed from point source delivery of canal water (direct restoration), to the use of a series of surface water recharge retention basins (diffuse restoration). To determine the influence of restoration on groundwater-surface water interactions in the Taylor Slough headwaters, a water budget was constructed for 1997–2011 using 70 hydro-meteorological stations. With diffuse restoration, groundwater seepage from the Everglades toward the urban boundary increased, while the downstream delivery of surface water to the main portion of the slough declined. The combined influence of diffuse restoration and climate led to increased intra-annual variability in the volume of groundwater and surface water in storage but supported a more seasonally hydrated wetland compared to the earlier direct tactics. The data further indicated that hydrologic engineering in karst wetland landscapes enhances groundwater-surface water interactions, even those designed for restoration purposes.
Resumo:
Mara is a transboundary river located in Kenya and Tanzania and considered to be an important life line to the inhabitants of the Mara-Serengeti ecosystem. It is also a source of water for domestic water supply, irrigation, livestock and wildlife. The alarming increase of water demand as well as the decline in the river flow in recent years has been a major challenge for water resource managers and stakeholders. This has necessitated the knowledge of the available water resources in the basin at different times of the year. Historical rainfall, minimum and maximum stream flows were analyzed. Inter and intra-annual variability of trends in streamflow are discussed. Landsat imagery was utilized in order to analyze the land use land cover in the upper Mara River basin. The semi-distributed hydrological model, Soil and Water Assessment Tool (SWAT) was used to model the basin water balance and understand the hydrologic effect of the recent land use changes from forest-to-agriculture. The results of this study provided the potential hydrological impacts of three land use change scenarios in the upper Mara River basin. It also adds to the existing literature and knowledge base with a view of promoting better land use management practices in the basin.
Resumo:
Cephalometric analysis is the mensuration of linear and angular measures through demarcation points as distances and lines on teleradiography, and is considered of fundamental importance for diagnosis and orthodontic planning. In this manner, the objective of this research was to compare cephalometric measurements obtained by dentists and radiologists from the analysis of the same radiograph, in a computerized cephalometric analysis program. All research participants marked 18 cephalometric points on a 14-inch notebook computer, as directed by the program itself (Radiocef 2®). From there, they generated 14 cephalometric parameters including skeletal, dental-skeletal, dental and soft tissue. In order to verify the intra-examiner agreement, 10 professionals from each group repeated the marking of the points with a minimum interval of eight days between the two markings. The intra-group variability was calculated based on the coefficients of variation (CV). The comparison between groups was performed using the Student t-test for normally distributed variables, and using the Mann-Whitney test for those with non-normal distribution. In the group of orthodontists, the measurements of Pog and 1-NB, SL, S-Ls Line, S-Li Line and 1.NB showed high internal variability. In the group of radiologists, the same occurred with the values of Pog and 1-NB, S-Ls Line, S-Li Line and 1.NA. In the comparison between groups, all the analyzed linear values and two angular values showed statistically significant differences between radiologists and dentists (p <0.05). According to the results, the interexaminer error in cephalometric analysis requires more attention, but does not come from a specific class of specialists, being either dentists or radiologists.
Resumo:
The goal of my Ph.D. thesis is to enhance the visualization of the peripheral retina using wide-field optical coherence tomography (OCT) in a clinical setting.
OCT has gain widespread adoption in clinical ophthalmology due to its ability to visualize the diseases of the macula and central retina in three-dimensions, however, clinical OCT has a limited field-of-view of 300. There has been increasing interest to obtain high-resolution images outside of this narrow field-of-view, because three-dimensional imaging of the peripheral retina may prove to be important in the early detection of neurodegenerative diseases, such as Alzheimer's and dementia, and the monitoring of known ocular diseases, such as diabetic retinopathy, retinal vein occlusions, and choroid masses.
Before attempting to build a wide-field OCT system, we need to better understand the peripheral optics of the human eye. Shack-Hartmann wavefront sensors are commonly used tools for measuring the optical imperfections of the eye, but their acquisition speed is limited by their underlying camera hardware. The first aim of my thesis research is to create a fast method of ocular wavefront sensing such that we can measure the wavefront aberrations at numerous points across a wide visual field. In order to address aim one, we will develop a sparse Zernike reconstruction technique (SPARZER) that will enable Shack-Hartmann wavefront sensors to use as little as 1/10th of the data that would normally be required for an accurate wavefront reading. If less data needs to be acquired, then we can increase the speed at which wavefronts can be recorded.
For my second aim, we will create a sophisticated optical model that reproduces the measured aberrations of the human eye. If we know how the average eye's optics distort light, then we can engineer ophthalmic imaging systems that preemptively cancel inherent ocular aberrations. This invention will help the retinal imaging community to design systems that are capable of acquiring high resolution images across a wide visual field. The proposed model eye is also of interest to the field of vision science as it aids in the study of how anatomy affects visual performance in the peripheral retina.
Using the optical model from aim two, we will design and reduce to practice a clinical OCT system that is capable of imaging a large (800) field-of-view with enhanced visualization of the peripheral retina. A key aspect of this third and final aim is to make the imaging system compatible with standard clinical practices. To this end, we will incorporate sensorless adaptive optics in order to correct the inter- and intra- patient variability in ophthalmic aberrations. Sensorless adaptive optics will improve both the brightness (signal) and clarity (resolution) of features in the peripheral retina without affecting the size of the imaging system.
The proposed work should not only be a noteworthy contribution to the ophthalmic and engineering communities, but it should strengthen our existing collaborations with the Duke Eye Center by advancing their capability to diagnose pathologies of the peripheral retinal.
Resumo:
Drought is a key factor affecting forest ecosystem processes at different spatio-temporal scales. For accurately modeling tree functioning ? and thus for producing reliable simulations of forest dynamics ? the consideration of the variability in the timing and extent of drought effects on tree growth is essential, particularly in strongly seasonal climates such as in the Mediterranean area. Yet, most dynamic vegetation models (DVMs) do not include this intra-annual variability of drought effects on tree growth. We present a novel approach for linking tree-ring data to drought simulations in DVMs. A modified forward model of tree-ring width (VS-Lite) was used to estimate seasonal- and site-specific growth responses to drought of Scots pine (Pinus sylvestris L.), which were subsequently implemented in the DVM ForClim. Ring-width data from sixteen sites along a moisture gradient from Central Spain to the Swiss Alps, including the dry inner Alpine valleys, were used to calibrate the forward ring-width model, and inventory data from managed Scots pine stands were used to evaluate ForClim performance. The modified VS-Lite accurately estimated the year-to-year variability in ring-width indices and produced realistic intra-annual growth responses to soil drought, showing a stronger relationship between growth and drought in spring than in the other seasons and thus capturing the strategy of Scots pine to cope with drought. The ForClim version including seasonal variability in growth responses to drought showed improved predictions of stand basal area and stem number, indicating the need to consider intra-annual differences in climate-growth relationships in DVMs when simulating forest dynamics. Forward modeling of ring-width growth may be a powerful tool to calibrate growth functions in DVMs that aim to simulate forest properties in across multiple environments at large spatial scales.
Resumo:
With respect to their sensitivity to ocean acidification, calcifiers such as the coccolithophore Emiliania huxleyi have received special attention, as the process of calcification seems to be particularly sensitive to changes in the marine carbonate system. For E. huxleyi, apparently conflicting results regarding its sensitivity to ocean acidification have been published (Iglesias-Rodriguez et al., 2008a; Riebesell et al., 2000). As possible causes for discrepancies, intra-specific variability and different effects of CO2 manipulation methods, i.e. the manipulation of total alkalinity (TA) or total dissolved inorganic carbon (DIC), have been discussed. While Langer et al. (2009) demonstrate a high degree of intra-specific variability between strains of E. huxleyi, the question whether different CO2 manipulation methods influence the cellular responses has not been resolved yet. In this study, closed TA as well as open and closed DIC manipulation methods were compared with respect to E. huxleyi's CO2-dependence in growth rate, POC- and PIC-production. The differences in the carbonate chemistry between TA and DIC manipulations were shown not to cause any differences in response patterns, while the latter differed between open and closed DIC manipulation. The two strains investigated showed different sensitivities to acidification of seawater, RCC1256 being more negatively affected in growth rates and PIC production than NZEH.
Resumo:
Il a été avancé que des apprenants expérimentés développeraient des niveaux élevés de conscience métalinguistique (MLA), ce qui leur faciliterait l’apprentissage de langues subséquentes (p.ex., Singleton & Aronin, 2007). De plus, des chercheurs dans le domaine de l’acquisition des langues tierces insistent sur les influences positives qu’exercent les langues précédemment apprises sur l’apprentissage formel d’une langue étrangère (p.ex., Cenoz & Gorter, 2015), et proposent de délaisser le regard traditionnel qui mettait l’accent sur l’interférence à l’origine des erreurs des apprenants pour opter pour une vision plus large et positive de l’interaction entre les langues. Il a été démontré que la similarité typologique ainsi que la compétence dans la langue source influence tous les types de transfert (p.ex., Ringbom, 1987, 2007). Cependant, le défi méthodologique de déterminer, à la fois l’usage pertinent d’une langue cible en tant que résultat d’une influence translinguistique (p.ex., Falk & Bardel, 2010) et d’établir le rôle crucial de la MLA dans l’activation consciente de mots ou de constructions reliés à travers différentes langues, demeure. La présente étude avait pour but de relever ce double défi en faisant appel à des protocoles oraux (TAPs) pour examiner le transfert positif de l’anglais (L2) vers l’allemand (L3) chez des Québécois francophones après cinq semaines d’enseignement formel de la L3. Les participants ont été soumis à une tâche de traduction développée aux fins de la présente étude. Les 42 items ont été sélectionnés sur la base de jugements de similarité et d’imagibilité ainsi que de fréquence des mots provenant d’une étude de cognats allemands-anglais (Friel & Kennison, 2001). Les participants devaient réfléchir à voix haute pendant qu’ils traduisaient des mots inconnus de l’allemand (L3) vers le français (L1). Le transfert positif a été opérationnalisé par des traductions correctes qui étaient basées sur un cognat anglais. La MLA a été mesurée par le biais du THAM (Test d’habiletés métalinguistiques) (Pinto & El Euch, 2015) ainsi que par l’analyse des TAPs. Les niveaux de compétence en anglais ont été établis sur la base du Michigan Test (Corrigan et al., 1979), tandis que les niveaux d’exposition ainsi que l’intérêt envers la langue et la culture allemandes ont été mesurés à l’aide d’un questionnaire. Une analyse fine des TAPs a révélé de la variabilité inter- et intra-individuelle dans l’activation consciente du vocabulaire en L2, tout en permettant l’identification de niveaux distincts de prise de conscience. Deux modèles indépendants de régressions logistiques ont permis d’identifier les deux dimensions de MLA comme prédicteurs de transfert positif. Le premier modèle, dans lequel le THAM était la mesure exclusive de MLA, a déterminé cette dimension réflexive comme principal prédicteur, suivie de la compétence en anglais, tandis qu’aucune des autres variables indépendantes pouvait prédire le transfert positif de l’anglais. Dans le second modèle, incluant le THAM ainsi que les TAPs comme mesures complémentaires de MLA, la dimension appliquée de MLA, telle que mesurée par les TAPs, était de loin le prédicteur principal, suivie de la dimension réflexive, telle que mesurée par le THAM, tandis que la compétence en anglais ne figurait plus parmi les facteurs ayant une influence significative sur la variable réponse. Bien que la verbalisation puisse avoir influencé la performance dans une certaine mesure, nos observations mettent en évidence la contribution précieuse de données introspectives comme complément aux résultats basés sur des caractéristiques purement linguistiques du transfert. Nos analyses soulignent la complexité des processus métalinguistiques et des stratégies individuelles, ce qui reflète une perspective dynamique du multilinguisme (p.ex., Jessner, 2008).
Resumo:
Introdução – A cintigrafia de perfusão do miocárdio (CPM) é utilizada no diagnóstico e seguimento de pacientes com doença arterial coronária, sendo a sua avaliação frequentemente realizada através da análise visual dos cortes tomográficos. A escala de cores selecionada é essencial na interpretação clínica das imagens de perfusão do miocárdio. Objetivo – Avaliar a influência de diferentes escalas de cores na avaliação qualitativa das imagens de CPM e estudar quais as mais adequadas para análise visual. Métodos – Trinta e cinco estudos de CPM foram avaliados visualmente por 16 estudantes da licenciatura em medicina nuclear nas escalas de cores Cool, Gray, Gray Invert, Thermal e Warm. Para a escala de cores Cool, a análise das imagens de CPM foi realizada através de um sistema de classificação semiquantitativo por scores. As restantes escalas de cores foram avaliadas por comparação com a análise das imagens efetuada com escala de cores Cool. Resultados/Discussão – Para a escala de cores Cool, a variabilidade interoperador revelou a existência de diferenças estatisticamente significativas entre todos os participantes (p<0,05), o que se pode atribuir à subjetividade da avaliação visual. Os resultados relativos às escalas de cores Gray e Gray Invert foram os mais próximos da perfusão do miocárdio observada com a escala Cool, considerando-se escalas de cores alternativas na análise visual dos estudos de CPM. Para as escalas de cores Thermal e Warm os resultados foram mais divergentes, não se considerando adequadas para a avaliação visual dos estudos de CPM. Conclusão – A escala de cores influencia a avaliação qualitativa da perfusão na CPM.
Resumo:
The efficiency of current cargo screening processes at sea and air ports is largely unknown as few benchmarks exists against which they could be measured. Some manufacturers provide benchmarks for individual sensors but we found no benchmarks that take a holistic view of the overall screening procedures and no benchmarks that take operator variability into account. Just adding up resources and manpower used is not an effective way for assessing systems where human decision-making and operator compliance to rules play a vital role. Our aim is to develop a decision support tool (cargo-screening system simulator) that will map the right technology and manpower to the right commodity-threat combination in order to maximise detection rates. In this paper we present our ideas for developing such a system and highlight the research challenges we have identified. Then we introduce our first case study and report on the progress we have made so far.