977 resultados para Interval generalized set
Resumo:
As one of the most competitive approaches to multi-objective optimization, evolutionary algorithms have been shown to obtain very good results for many realworld multi-objective problems. One of the issues that can affect the performance of these algorithms is the uncertainty in the quality of the solutions which is usually represented with the noise in the objective values. Therefore, handling noisy objectives in evolutionary multi-objective optimization algorithms becomes very important and is gaining more attention in recent years. In this paper we present ?-degree Pareto dominance relation for ordering the solutions in multi-objective optimization when the values of the objective functions are given as intervals. Based on this dominance relation, we propose an adaptation of the non-dominated sorting algorithm for ranking the solutions. This ranking method is then used in a standardmulti-objective evolutionary algorithm and a recently proposed novel multi-objective estimation of distribution algorithm based on joint variable-objective probabilistic modeling, and applied to a set of multi-objective problems with different levels of independent noise. The experimental results show that the use of the proposed method for solution ranking allows to approximate Pareto sets which are considerably better than those obtained when using the dominance probability-based ranking method, which is one of the main methods for noise handling in multi-objective optimization.
Resumo:
El análisis determinista de seguridad (DSA) es el procedimiento que sirve para diseñar sistemas, estructuras y componentes relacionados con la seguridad en las plantas nucleares. El DSA se basa en simulaciones computacionales de una serie de hipotéticos accidentes representativos de la instalación, llamados escenarios base de diseño (DBS). Los organismos reguladores señalan una serie de magnitudes de seguridad que deben calcularse en las simulaciones, y establecen unos criterios reguladores de aceptación (CRA), que son restricciones que deben cumplir los valores de esas magnitudes. Las metodologías para realizar los DSA pueden ser de 2 tipos: conservadoras o realistas. Las metodologías conservadoras utilizan modelos predictivos e hipótesis marcadamente pesimistas, y, por ello, relativamente simples. No necesitan incluir un análisis de incertidumbre de sus resultados. Las metodologías realistas se basan en hipótesis y modelos predictivos realistas, generalmente mecanicistas, y se suplementan con un análisis de incertidumbre de sus principales resultados. Se les denomina también metodologías BEPU (“Best Estimate Plus Uncertainty”). En ellas, la incertidumbre se representa, básicamente, de manera probabilista. Para metodologías conservadores, los CRA son, simplemente, restricciones sobre valores calculados de las magnitudes de seguridad, que deben quedar confinados en una “región de aceptación” de su recorrido. Para metodologías BEPU, el CRA no puede ser tan sencillo, porque las magnitudes de seguridad son ahora variables inciertas. En la tesis se desarrolla la manera de introducción de la incertidumbre en los CRA. Básicamente, se mantiene el confinamiento a la misma región de aceptación, establecida por el regulador. Pero no se exige el cumplimiento estricto sino un alto nivel de certidumbre. En el formalismo adoptado, se entiende por ello un “alto nivel de probabilidad”, y ésta corresponde a la incertidumbre de cálculo de las magnitudes de seguridad. Tal incertidumbre puede considerarse como originada en los inputs al modelo de cálculo, y propagada a través de dicho modelo. Los inputs inciertos incluyen las condiciones iniciales y de frontera al cálculo, y los parámetros empíricos de modelo, que se utilizan para incorporar la incertidumbre debida a la imperfección del modelo. Se exige, por tanto, el cumplimiento del CRA con una probabilidad no menor a un valor P0 cercano a 1 y definido por el regulador (nivel de probabilidad o cobertura). Sin embargo, la de cálculo de la magnitud no es la única incertidumbre existente. Aunque un modelo (sus ecuaciones básicas) se conozca a la perfección, la aplicación input-output que produce se conoce de manera imperfecta (salvo que el modelo sea muy simple). La incertidumbre debida la ignorancia sobre la acción del modelo se denomina epistémica; también se puede decir que es incertidumbre respecto a la propagación. La consecuencia es que la probabilidad de cumplimiento del CRA no se puede conocer a la perfección; es una magnitud incierta. Y así se justifica otro término usado aquí para esta incertidumbre epistémica: metaincertidumbre. Los CRA deben incorporar los dos tipos de incertidumbre: la de cálculo de la magnitud de seguridad (aquí llamada aleatoria) y la de cálculo de la probabilidad (llamada epistémica o metaincertidumbre). Ambas incertidumbres pueden introducirse de dos maneras: separadas o combinadas. En ambos casos, el CRA se convierte en un criterio probabilista. Si se separan incertidumbres, se utiliza una probabilidad de segundo orden; si se combinan, se utiliza una probabilidad única. Si se emplea la probabilidad de segundo orden, es necesario que el regulador imponga un segundo nivel de cumplimiento, referido a la incertidumbre epistémica. Se denomina nivel regulador de confianza, y debe ser un número cercano a 1. Al par formado por los dos niveles reguladores (de probabilidad y de confianza) se le llama nivel regulador de tolerancia. En la Tesis se razona que la mejor manera de construir el CRA BEPU es separando las incertidumbres, por dos motivos. Primero, los expertos defienden el tratamiento por separado de incertidumbre aleatoria y epistémica. Segundo, el CRA separado es (salvo en casos excepcionales) más conservador que el CRA combinado. El CRA BEPU no es otra cosa que una hipótesis sobre una distribución de probabilidad, y su comprobación se realiza de forma estadística. En la tesis, los métodos estadísticos para comprobar el CRA BEPU en 3 categorías, según estén basados en construcción de regiones de tolerancia, en estimaciones de cuantiles o en estimaciones de probabilidades (ya sea de cumplimiento, ya sea de excedencia de límites reguladores). Según denominación propuesta recientemente, las dos primeras categorías corresponden a los métodos Q, y la tercera, a los métodos P. El propósito de la clasificación no es hacer un inventario de los distintos métodos en cada categoría, que son muy numerosos y variados, sino de relacionar las distintas categorías y citar los métodos más utilizados y los mejor considerados desde el punto de vista regulador. Se hace mención especial del método más utilizado hasta el momento: el método no paramétrico de Wilks, junto con su extensión, hecha por Wald, al caso multidimensional. Se decribe su método P homólogo, el intervalo de Clopper-Pearson, típicamente ignorado en el ámbito BEPU. En este contexto, se menciona el problema del coste computacional del análisis de incertidumbre. Los métodos de Wilks, Wald y Clopper-Pearson requieren que la muestra aleatortia utilizada tenga un tamaño mínimo, tanto mayor cuanto mayor el nivel de tolerancia exigido. El tamaño de muestra es un indicador del coste computacional, porque cada elemento muestral es un valor de la magnitud de seguridad, que requiere un cálculo con modelos predictivos. Se hace especial énfasis en el coste computacional cuando la magnitud de seguridad es multidimensional; es decir, cuando el CRA es un criterio múltiple. Se demuestra que, cuando las distintas componentes de la magnitud se obtienen de un mismo cálculo, el carácter multidimensional no introduce ningún coste computacional adicional. Se prueba así la falsedad de una creencia habitual en el ámbito BEPU: que el problema multidimensional sólo es atacable desde la extensión de Wald, que tiene un coste de computación creciente con la dimensión del problema. En el caso (que se da a veces) en que cada componente de la magnitud se calcula independientemente de los demás, la influencia de la dimensión en el coste no se puede evitar. Las primeras metodologías BEPU hacían la propagación de incertidumbres a través de un modelo sustitutivo (metamodelo o emulador) del modelo predictivo o código. El objetivo del metamodelo no es su capacidad predictiva, muy inferior a la del modelo original, sino reemplazar a éste exclusivamente en la propagación de incertidumbres. Para ello, el metamodelo se debe construir con los parámetros de input que más contribuyan a la incertidumbre del resultado, y eso requiere un análisis de importancia o de sensibilidad previo. Por su simplicidad, el modelo sustitutivo apenas supone coste computacional, y puede estudiarse exhaustivamente, por ejemplo mediante muestras aleatorias. En consecuencia, la incertidumbre epistémica o metaincertidumbre desaparece, y el criterio BEPU para metamodelos se convierte en una probabilidad simple. En un resumen rápido, el regulador aceptará con más facilidad los métodos estadísticos que menos hipótesis necesiten; los exactos más que los aproximados; los no paramétricos más que los paramétricos, y los frecuentistas más que los bayesianos. El criterio BEPU se basa en una probabilidad de segundo orden. La probabilidad de que las magnitudes de seguridad estén en la región de aceptación no sólo puede asimilarse a una probabilidad de éxito o un grado de cumplimiento del CRA. También tiene una interpretación métrica: representa una distancia (dentro del recorrido de las magnitudes) desde la magnitud calculada hasta los límites reguladores de aceptación. Esta interpretación da pie a una definición que propone esta tesis: la de margen de seguridad probabilista. Dada una magnitud de seguridad escalar con un límite superior de aceptación, se define el margen de seguridad (MS) entre dos valores A y B de la misma como la probabilidad de que A sea menor que B, obtenida a partir de las incertidumbres de A y B. La definición probabilista de MS tiene varias ventajas: es adimensional, puede combinarse de acuerdo con las leyes de la probabilidad y es fácilmente generalizable a varias dimensiones. Además, no cumple la propiedad simétrica. El término margen de seguridad puede aplicarse a distintas situaciones: distancia de una magnitud calculada a un límite regulador (margen de licencia); distancia del valor real de la magnitud a su valor calculado (margen analítico); distancia desde un límite regulador hasta el valor umbral de daño a una barrera (margen de barrera). Esta idea de representar distancias (en el recorrido de magnitudes de seguridad) mediante probabilidades puede aplicarse al estudio del conservadurismo. El margen analítico puede interpretarse como el grado de conservadurismo (GC) de la metodología de cálculo. Utilizando la probabilidad, se puede cuantificar el conservadurismo de límites de tolerancia de una magnitud, y se pueden establecer indicadores de conservadurismo que sirvan para comparar diferentes métodos de construcción de límites y regiones de tolerancia. Un tópico que nunca se abordado de manera rigurosa es el de la validación de metodologías BEPU. Como cualquier otro instrumento de cálculo, una metodología, antes de poder aplicarse a análisis de licencia, tiene que validarse, mediante la comparación entre sus predicciones y valores reales de las magnitudes de seguridad. Tal comparación sólo puede hacerse en escenarios de accidente para los que existan valores medidos de las magnitudes de seguridad, y eso ocurre, básicamente en instalaciones experimentales. El objetivo último del establecimiento de los CRA consiste en verificar que se cumplen para los valores reales de las magnitudes de seguridad, y no sólo para sus valores calculados. En la tesis se demuestra que una condición suficiente para este objetivo último es la conjunción del cumplimiento de 2 criterios: el CRA BEPU de licencia y un criterio análogo, pero aplicado a validación. Y el criterio de validación debe demostrarse en escenarios experimentales y extrapolarse a plantas nucleares. El criterio de licencia exige un valor mínimo (P0) del margen probabilista de licencia; el criterio de validación exige un valor mínimo del margen analítico (el GC). Esos niveles mínimos son básicamente complementarios; cuanto mayor uno, menor el otro. La práctica reguladora actual impone un valor alto al margen de licencia, y eso supone que el GC exigido es pequeño. Adoptar valores menores para P0 supone menor exigencia sobre el cumplimiento del CRA, y, en cambio, más exigencia sobre el GC de la metodología. Y es importante destacar que cuanto mayor sea el valor mínimo del margen (de licencia o analítico) mayor es el coste computacional para demostrarlo. Así que los esfuerzos computacionales también son complementarios: si uno de los niveles es alto (lo que aumenta la exigencia en el cumplimiento del criterio) aumenta el coste computacional. Si se adopta un valor medio de P0, el GC exigido también es medio, con lo que la metodología no tiene que ser muy conservadora, y el coste computacional total (licencia más validación) puede optimizarse. ABSTRACT Deterministic Safety Analysis (DSA) is the procedure used in the design of safety-related systems, structures and components of nuclear power plants (NPPs). DSA is based on computational simulations of a set of hypothetical accidents of the plant, named Design Basis Scenarios (DBS). Nuclear regulatory authorities require the calculation of a set of safety magnitudes, and define the regulatory acceptance criteria (RAC) that must be fulfilled by them. Methodologies for performing DSA van be categorized as conservative or realistic. Conservative methodologies make use of pessimistic model and assumptions, and are relatively simple. They do not need an uncertainty analysis of their results. Realistic methodologies are based on realistic (usually mechanistic) predictive models and assumptions, and need to be supplemented with uncertainty analyses of their results. They are also termed BEPU (“Best Estimate Plus Uncertainty”) methodologies, and are typically based on a probabilistic representation of the uncertainty. For conservative methodologies, the RAC are simply the restriction of calculated values of safety magnitudes to “acceptance regions” defined on their range. For BEPU methodologies, the RAC cannot be so simple, because the safety magnitudes are now uncertain. In the present Thesis, the inclusion of uncertainty in RAC is studied. Basically, the restriction to the acceptance region must be fulfilled “with a high certainty level”. Specifically, a high probability of fulfillment is required. The calculation uncertainty of the magnitudes is considered as propagated from inputs through the predictive model. Uncertain inputs include model empirical parameters, which store the uncertainty due to the model imperfection. The fulfillment of the RAC is required with a probability not less than a value P0 close to 1 and defined by the regulator (probability or coverage level). Calculation uncertainty is not the only one involved. Even if a model (i.e. the basic equations) is perfectly known, the input-output mapping produced by the model is imperfectly known (unless the model is very simple). This ignorance is called epistemic uncertainty, and it is associated to the process of propagation). In fact, it is propagated to the probability of fulfilling the RAC. Another term used on the Thesis for this epistemic uncertainty is metauncertainty. The RAC must include the two types of uncertainty: one for the calculation of the magnitude (aleatory uncertainty); the other one, for the calculation of the probability (epistemic uncertainty). The two uncertainties can be taken into account in a separate fashion, or can be combined. In any case the RAC becomes a probabilistic criterion. If uncertainties are separated, a second-order probability is used; of both are combined, a single probability is used. On the first case, the regulator must define a level of fulfillment for the epistemic uncertainty, termed regulatory confidence level, as a value close to 1. The pair of regulatory levels (probability and confidence) is termed the regulatory tolerance level. The Thesis concludes that the adequate way of setting the BEPU RAC is by separating the uncertainties. There are two reasons to do so: experts recommend the separation of aleatory and epistemic uncertainty; and the separated RAC is in general more conservative than the joint RAC. The BEPU RAC is a hypothesis on a probability distribution, and must be statistically tested. The Thesis classifies the statistical methods to verify the RAC fulfillment in 3 categories: methods based on tolerance regions, in quantile estimators and on probability (of success or failure) estimators. The former two have been termed Q-methods, whereas those in the third category are termed P-methods. The purpose of our categorization is not to make an exhaustive survey of the very numerous existing methods. Rather, the goal is to relate the three categories and examine the most used methods from a regulatory standpoint. Special mention deserves the most used method, due to Wilks, and its extension to multidimensional variables (due to Wald). The counterpart P-method of Wilks’ is Clopper-Pearson interval, typically ignored in the BEPU realm. The problem of the computational cost of an uncertainty analysis is tackled. Wilks’, Wald’s and Clopper-Pearson methods require a minimum sample size, which is a growing function of the tolerance level. The sample size is an indicator of the computational cost, because each element of the sample must be calculated with the predictive models (codes). When the RAC is a multiple criteria, the safety magnitude becomes multidimensional. When all its components are output of the same calculation, the multidimensional character does not introduce additional computational cost. In this way, an extended idea in the BEPU realm, stating that the multi-D problem can only be tackled with the Wald extension, is proven to be false. When the components of the magnitude are independently calculated, the influence of the problem dimension on the cost cannot be avoided. The former BEPU methodologies performed the uncertainty propagation through a surrogate model of the code, also termed emulator or metamodel. The goal of a metamodel is not the predictive capability, clearly worse to the original code, but the capacity to propagate uncertainties with a lower computational cost. The emulator must contain the input parameters contributing the most to the output uncertainty, and this requires a previous importance analysis. The surrogate model is practically inexpensive to run, so that it can be exhaustively analyzed through Monte Carlo. Therefore, the epistemic uncertainty due to sampling will be reduced to almost zero, and the BEPU RAC for metamodels includes a simple probability. The regulatory authority will tend to accept the use of statistical methods which need a minimum of assumptions: exact, nonparametric and frequentist methods rather than approximate, parametric and bayesian methods, respectively. The BEPU RAC is based on a second-order probability. The probability of the safety magnitudes being inside the acceptance region is a success probability and can be interpreted as a fulfillment degree if the RAC. Furthermore, it has a metric interpretation, as a distance (in the range of magnitudes) from calculated values of the magnitudes to acceptance regulatory limits. A probabilistic definition of safety margin (SM) is proposed in the thesis. The same from a value A to other value B of a safety magnitude is defined as the probability that A is less severe than B, obtained from the uncertainties if A and B. The probabilistic definition of SM has several advantages: it is nondimensional, ranges in the interval (0,1) and can be easily generalized to multiple dimensions. Furthermore, probabilistic SM are combined according to the probability laws. And a basic property: probabilistic SM are not symmetric. There are several types of SM: distance from a calculated value to a regulatory limit (licensing margin); or from the real value to the calculated value of a magnitude (analytical margin); or from the regulatory limit to the damage threshold (barrier margin). These representations of distances (in the magnitudes’ range) as probabilities can be applied to the quantification of conservativeness. Analytical margins can be interpreted as the degree of conservativeness (DG) of the computational methodology. Conservativeness indicators are established in the Thesis, useful in the comparison of different methods of constructing tolerance limits and regions. There is a topic which has not been rigorously tackled to the date: the validation of BEPU methodologies. Before being applied in licensing, methodologies must be validated, on the basis of comparisons of their predictions ad real values of the safety magnitudes. Real data are obtained, basically, in experimental facilities. The ultimate goal of establishing RAC is to verify that real values (aside from calculated values) fulfill them. In the Thesis it is proved that a sufficient condition for this goal is the conjunction of 2 criteria: the BEPU RAC and an analogous criterion for validation. And this las criterion must be proved in experimental scenarios and extrapolated to NPPs. The licensing RAC requires a minimum value (P0) of the probabilistic licensing margin; the validation criterion requires a minimum value of the analytical margin (i.e., of the DG). These minimum values are basically complementary; the higher one of them, the lower the other one. The regulatory practice sets a high value on the licensing margin, so that the required DG is low. The possible adoption of lower values for P0 would imply weaker exigence on the RCA fulfillment and, on the other hand, higher exigence on the conservativeness of the methodology. It is important to highlight that a higher minimum value of the licensing or analytical margin requires a higher computational cost. Therefore, the computational efforts are also complementary. If medium levels are adopted, the required DG is also medium, and the methodology does not need to be very conservative. The total computational effort (licensing plus validation) could be optimized.
Resumo:
El uso de aritmética de punto fijo es una opción de diseño muy extendida en sistemas con fuertes restricciones de área, consumo o rendimiento. Para producir implementaciones donde los costes se minimicen sin impactar negativamente en la precisión de los resultados debemos llevar a cabo una asignación cuidadosa de anchuras de palabra. Encontrar la combinación óptima de anchuras de palabra en coma fija para un sistema dado es un problema combinatorio NP-hard al que los diseñadores dedican entre el 25 y el 50 % del ciclo de diseño. Las plataformas hardware reconfigurables, como son las FPGAs, también se benefician de las ventajas que ofrece la aritmética de coma fija, ya que éstas compensan las frecuencias de reloj más bajas y el uso más ineficiente del hardware que hacen estas plataformas respecto a los ASICs. A medida que las FPGAs se popularizan para su uso en computación científica los diseños aumentan de tamaño y complejidad hasta llegar al punto en que no pueden ser manejados eficientemente por las técnicas actuales de modelado de señal y ruido de cuantificación y de optimización de anchura de palabra. En esta Tesis Doctoral exploramos distintos aspectos del problema de la cuantificación y presentamos nuevas metodologías para cada uno de ellos: Las técnicas basadas en extensiones de intervalos han permitido obtener modelos de propagación de señal y ruido de cuantificación muy precisos en sistemas con operaciones no lineales. Nosotros llevamos esta aproximación un paso más allá introduciendo elementos de Multi-Element Generalized Polynomial Chaos (ME-gPC) y combinándolos con una técnica moderna basada en Modified Affine Arithmetic (MAA) estadístico para así modelar sistemas que contienen estructuras de control de flujo. Nuestra metodología genera los distintos caminos de ejecución automáticamente, determina las regiones del dominio de entrada que ejercitarán cada uno de ellos y extrae los momentos estadísticos del sistema a partir de dichas soluciones parciales. Utilizamos esta técnica para estimar tanto el rango dinámico como el ruido de redondeo en sistemas con las ya mencionadas estructuras de control de flujo y mostramos la precisión de nuestra aproximación, que en determinados casos de uso con operadores no lineales llega a tener tan solo una desviación del 0.04% con respecto a los valores de referencia obtenidos mediante simulación. Un inconveniente conocido de las técnicas basadas en extensiones de intervalos es la explosión combinacional de términos a medida que el tamaño de los sistemas a estudiar crece, lo cual conlleva problemas de escalabilidad. Para afrontar este problema presen tamos una técnica de inyección de ruidos agrupados que hace grupos con las señales del sistema, introduce las fuentes de ruido para cada uno de los grupos por separado y finalmente combina los resultados de cada uno de ellos. De esta forma, el número de fuentes de ruido queda controlado en cada momento y, debido a ello, la explosión combinatoria se minimiza. También presentamos un algoritmo de particionado multi-vía destinado a minimizar la desviación de los resultados a causa de la pérdida de correlación entre términos de ruido con el objetivo de mantener los resultados tan precisos como sea posible. La presente Tesis Doctoral también aborda el desarrollo de metodologías de optimización de anchura de palabra basadas en simulaciones de Monte-Cario que se ejecuten en tiempos razonables. Para ello presentamos dos nuevas técnicas que exploran la reducción del tiempo de ejecución desde distintos ángulos: En primer lugar, el método interpolativo aplica un interpolador sencillo pero preciso para estimar la sensibilidad de cada señal, y que es usado después durante la etapa de optimización. En segundo lugar, el método incremental gira en torno al hecho de que, aunque es estrictamente necesario mantener un intervalo de confianza dado para los resultados finales de nuestra búsqueda, podemos emplear niveles de confianza más relajados, lo cual deriva en un menor número de pruebas por simulación, en las etapas iniciales de la búsqueda, cuando todavía estamos lejos de las soluciones optimizadas. Mediante estas dos aproximaciones demostramos que podemos acelerar el tiempo de ejecución de los algoritmos clásicos de búsqueda voraz en factores de hasta x240 para problemas de tamaño pequeño/mediano. Finalmente, este libro presenta HOPLITE, una infraestructura de cuantificación automatizada, flexible y modular que incluye la implementación de las técnicas anteriores y se proporciona de forma pública. Su objetivo es ofrecer a desabolladores e investigadores un entorno común para prototipar y verificar nuevas metodologías de cuantificación de forma sencilla. Describimos el flujo de trabajo, justificamos las decisiones de diseño tomadas, explicamos su API pública y hacemos una demostración paso a paso de su funcionamiento. Además mostramos, a través de un ejemplo sencillo, la forma en que conectar nuevas extensiones a la herramienta con las interfaces ya existentes para poder así expandir y mejorar las capacidades de HOPLITE. ABSTRACT Using fixed-point arithmetic is one of the most common design choices for systems where area, power or throughput are heavily constrained. In order to produce implementations where the cost is minimized without negatively impacting the accuracy of the results, a careful assignment of word-lengths is required. The problem of finding the optimal combination of fixed-point word-lengths for a given system is a combinatorial NP-hard problem to which developers devote between 25 and 50% of the design-cycle time. Reconfigurable hardware platforms such as FPGAs also benefit of the advantages of fixed-point arithmetic, as it compensates for the slower clock frequencies and less efficient area utilization of the hardware platform with respect to ASICs. As FPGAs become commonly used for scientific computation, designs constantly grow larger and more complex, up to the point where they cannot be handled efficiently by current signal and quantization noise modelling and word-length optimization methodologies. In this Ph.D. Thesis we explore different aspects of the quantization problem and we present new methodologies for each of them: The techniques based on extensions of intervals have allowed to obtain accurate models of the signal and quantization noise propagation in systems with non-linear operations. We take this approach a step further by introducing elements of MultiElement Generalized Polynomial Chaos (ME-gPC) and combining them with an stateof- the-art Statistical Modified Affine Arithmetic (MAA) based methodology in order to model systems that contain control-flow structures. Our methodology produces the different execution paths automatically, determines the regions of the input domain that will exercise them, and extracts the system statistical moments from the partial results. We use this technique to estimate both the dynamic range and the round-off noise in systems with the aforementioned control-flow structures. We show the good accuracy of our approach, which in some case studies with non-linear operators shows a 0.04 % deviation respect to the simulation-based reference values. A known drawback of the techniques based on extensions of intervals is the combinatorial explosion of terms as the size of the targeted systems grows, which leads to scalability problems. To address this issue we present a clustered noise injection technique that groups the signals in the system, introduces the noise terms in each group independently and then combines the results at the end. In this way, the number of noise sources in the system at a given time is controlled and, because of this, the combinato rial explosion is minimized. We also present a multi-way partitioning algorithm aimed at minimizing the deviation of the results due to the loss of correlation between noise terms, in order to keep the results as accurate as possible. This Ph.D. Thesis also covers the development of methodologies for word-length optimization based on Monte-Carlo simulations in reasonable times. We do so by presenting two novel techniques that explore the reduction of the execution times approaching the problem in two different ways: First, the interpolative method applies a simple but precise interpolator to estimate the sensitivity of each signal, which is later used to guide the optimization effort. Second, the incremental method revolves on the fact that, although we strictly need to guarantee a certain confidence level in the simulations for the final results of the optimization process, we can do it with more relaxed levels, which in turn implies using a considerably smaller amount of samples, in the initial stages of the process, when we are still far from the optimized solution. Through these two approaches we demonstrate that the execution time of classical greedy techniques can be accelerated by factors of up to ×240 for small/medium sized problems. Finally, this book introduces HOPLITE, an automated, flexible and modular framework for quantization that includes the implementation of the previous techniques and is provided for public access. The aim is to offer a common ground for developers and researches for prototyping and verifying new techniques for system modelling and word-length optimization easily. We describe its work flow, justifying the taken design decisions, explain its public API and we do a step-by-step demonstration of its execution. We also show, through an example, the way new extensions to the flow should be connected to the existing interfaces in order to expand and improve the capabilities of HOPLITE.
Resumo:
La evaluación de las prestaciones de las embarcaciones a vela ha constituido un objetivo para ingenieros navales y marinos desde los principios de la historia de la navegación. El conocimiento acerca de estas prestaciones, ha crecido desde la identificación de los factores clave relacionados con ellas(eslora, estabilidad, desplazamiento y superficie vélica), a una comprensión más completa de las complejas fuerzas y acoplamientos involucrados en el equilibrio. Junto con este conocimiento, la aparición de los ordenadores ha hecho posible llevar a cabo estas tareas de una forma sistemática. Esto incluye el cálculo detallado de fuerzas, pero también, el uso de estas fuerzas junto con la descripción de una embarcación a vela para la predicción de su comportamiento y, finalmente, sus prestaciones. Esta investigación tiene como objetivo proporcionar una definición global y abierta de un conjunto de modelos y reglas para describir y analizar este comportamiento. Esto se lleva a cabo sin aplicar restricciones en cuanto al tipo de barco o cálculo, sino de una forma generalizada, de modo que sea posible resolver cualquier situación, tanto estacionaria como en el dominio del tiempo. Para ello se comienza con una definición básica de los factores que condicionan el comportamiento de una embarcación a vela. A continuación se proporciona una metodología para gestionar el uso de datos de diferentes orígenes para el cálculo de fuerzas, siempre con el la solución del problema como objetivo. Esta última parte se plasma en un programa de ordenador, PASim, cuyo propósito es evaluar las prestaciones de diferentes ti pos de embarcaciones a vela en un amplio rango de condiciones. Varios ejemplos presentan diferentes usos de PASim con el objetivo de ilustrar algunos de los aspectos discutidos a lo largo de la definición del problema y su solución . Finalmente, se presenta una estructura global de cara a proporcionar una representación virtual de la embarcación real, en la cual, no solo e l comportamiento sino también su manejo, son cercanos a la experiencia de los navegantes en el mundo real. Esta estructura global se propone como el núcleo (un motor de software) de un simulador físico para el que se proporciona una especificación básica. ABSTRACT The assessment of the performance of sailing yachts, and ships in general, has been an objective for naval architects and sailors since the beginning of the history of navigation. The knowledge has grown from identifying the key factors that influence performance(length, stability, displacement and sail area), to a much more complete understanding of the complex forces and couplings involved in the equilibrium. Along with this knowledge, the advent of computers has made it possible to perform the associated tasks in a systematic way. This includes the detailed calculation of forces, but also the use of those forces, along with the description of a sailing yacht, to predict its behavior, and ultimately, its performance. The aim of this investigation is to provide a global and open definition of a set of models and rules to describe and analyze the behavior of a sailing yacht. This is done without applying any restriction to the type of yacht or calculation, but rather in a generalized way, capable of solving any possible situation, whether it is in a steady state or in the time domain. First, the basic definition of the factors that condition the behavior of a sailing yacht is given. Then, a methodology is provided to assist with the use of data from different origins for the calculation of forces, always aiming towards the solution of the problem. This last part is implemented as a computational tool, PASim, intended to assess the performance of different types of sailing yachts in a wide range of conditions. Several examples then present different uses of PASim, as a way to illustrate some of the aspects discussed throughout the definition of the problem and its solution. Finally, a global structure is presented to provide a general virtual representation of the real yacht, in which not only the behavior, but also its handling is close to the experience of the sailors in the real world. This global structure is proposed as the core (a software engine) of a physical yacht simulator, for which a basic specification is provided.
Resumo:
A hyperplane arrangement is a finite set of hyperplanes in a real affine space. An especially important arrangement is the braid arrangement, which is the set of all hyperplanes xi - xj = 1, 1 = i < j = n, in Rn. Some combinatorial properties of certain deformations of the braid arrangement are surveyed. In particular, there are unexpected connections with the theory of interval orders and with the enumeration of trees. For instance, the number of labeled interval orders that can be obtained from n intervals I1,..., In of generic lengths is counted. There is also discussed an arrangement due to N. Linial whose number of regions is the number of alternating (or intransitive) trees, as defined by Gelfand, Graev, and Postnikov [Gelfand, I. M., Graev, M. I., and Postnikov, A. (1995), preprint]. Finally, a refinement is given, related to counting labeled trees by number of inversions, of a result of Shi [Shi, J.-Y. (1986), Lecture Notes in Mathematics, no. 1179, Springer-Verlag] that a certain deformation of the braid arrangement has (n + 1)n-1 regions.
Resumo:
In this paper we provide the proof of a practical point-wise characterization of the set RP defined by the closure set of the real projections of the zeros of an exponential polynomial P(z) = Σn j=1 cjewjz with real frequencies wj linearly independent over the rationals. As a consequence, we give a complete description of the set RP and prove its invariance with respect to the moduli of the c′ js, which allows us to determine exactly the gaps of RP and the extremes of the critical interval of P(z) by solving inequations with positive real numbers. Finally, we analyse the converse of this result of invariance.
Resumo:
This layer is a georeferenced raster image of the United States Geological Survey 7.5 minute topographic sheet map entitled: New York and vicinity : Paterson, N.J.-N.Y., 1955. It is part of an 8 sheet map set covering the metropolitan New York City area. It was published in 1961. Scale 1:24,000. The source map was prepared by the Geological Survey from 1:24,000-scale maps of Hackensack, Paterson, Orange, and Weehawken 1955 7.5 minute quadrangles. The Orange quadrangle was previously compiled by the Army Map Service. Culture revised by the Geological Survey. Hydrography compiled from USC&GS charts 287 (1954), 745 (1956), and 746 (1956). The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD27 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. USGS maps are typical topographic maps portraying both natural and manmade features. They show and name works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. They also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief is shown with standard contour intervals of 10 and 20 feet; depths are shown with contours and soundings. Please pay close attention to map collar information on projections, spheroid, sources, dates, and keys to grid numbering and other numbers which appear inside the neatline. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the United States Geological Survey 7.5 minute topographic sheet map entitled: New York and vicinity : Harlem, N.Y.-N.J., 1956. It is part of an 8 sheet map set covering the metropolitan New York City area. It was published in 1961. Scale 1:24,000. The source map was compiled from 1:24,000-scale maps of Mount Vernon 1956, Yonkers 1956, Central Park 1956, and Flushing 1955 7.5 minute quadrangles. Hydrography compiled from USC&GS charts 222 (1955), 223 (1954), 748 (1955), 226, 274, 745, 746, and 747 (1956). The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD27 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. USGS maps are typical topographic maps portraying both natural and manmade features. They show and name works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. They also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief is shown with standard contour intervals of 10 and 20 feet; depths are shown with contours and soundings. Please pay close attention to map collar information on projections, spheroid, sources, dates, and keys to grid numbering and other numbers which appear inside the neatline. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the United States Geological Survey 7.5 minute topographic sheet map entitled: New York and vicinity : Oyster Bay, N.Y.-Conn., 1955. It is part of an 8 sheet map set covering the metropolitan New York City area. It was published in 1961. Scale 1:24,000. The source map was prepared by the Geological Survey from 1:24,000-scale maps of Bayville 1954, Mamaroneck 1955, Sea Cliff 1954, and Hicksville 1954 7.5 minute quadrangles compiled by the Army Map Service. The Mamaroneck quadrangle was previously compiled by the Geological Survey in 1933 and 1934. Culture revised by the Geological Survey. Hydrography compiled from USC&GS charts 222 (1955), 223 (1954, 1955), and 224 (1954). The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD27 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. USGS maps are typical topographic maps portraying both natural and manmade features. They show and name works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. They also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief is shown with standard contour intervals of 10 and 20 feet; depths are shown with contours and soundings. Please pay close attention to map collar information on projections, spheroid, sources, dates, and keys to grid numbering and other numbers which appear inside the neatline. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the United States Geological Survey 7.5 minute topographic sheet map entitled: New York and vicinity : Staten Island, N.Y.-N.J., 1955. It is part of an 8 sheet map set covering the metropolitan New York City area. It was published in 1961. Scale 1:24,000. The source map was prepared by the Geological Survey from 1:24,000-scale maps of Jersey City, Elizabeth, Arthur Kill, and The Narrows, 1955 7.5 minute quadrangles. Hydrography compiled from USC&GS charts 285 (1955), 286 (1954), 287 (1954), 745 (1956), 369 (1956), 540 (1954), 541 (1955) and 745 (1956). The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD27 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. USGS maps are typical topographic maps portraying both natural and manmade features. They show and name works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. They also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief is shown with standard contour intervals of 10 and 20 feet; depths are shown with contours and soundings. Please pay close attention to map collar information on projections, spheroid, sources, dates, and keys to grid numbering and other numbers which appear inside the neatline. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the United States Geological Survey 7.5 minute topographic sheet map entitled: New York and vicinity : Brooklyn, N.Y.-N.J., 1957. It is part of an 8 sheet map set covering the metropolitan New York City area. It was published in 1961. Scale 1:24,000. The source map was prepared by the Geological Survey from 1:24,000-scale maps of Jamaica 1957, Brooklyn 1956, Coney Island 1955, and Far Rockaway 1954 7.5 minute quadrangles. The Far Rockaway quadrangle was previously compiled by the Army Map Service. Culture revised by the Geological Survey. Hydrography compiled from USC&GS charts 542 (1955), 745 (1956), and 369 (1956). The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD27 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. USGS maps are typical topographic maps portraying both natural and manmade features. They show and name works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. They also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief is shown with standard contour intervals of 10 and 20 feet; depths are shown with contours and soundings. Please pay close attention to map collar information on projections, spheroid, sources, dates, and keys to grid numbering and other numbers which appear inside the neatline. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the United States Geological Survey 7.5 minute topographic sheet map entitled: New York and vicinity : Hempstead, N.Y., 1955. It is part of an 8 sheet map set covering the metropolitan New York City area. It was published in 1961. Scale 1:24,000. The source map was prepared by the Geological Survey from 1:24,000-scale maps of Freeport 1955, Lynbrook, Lawrence, and Jones Inlet 1954 7.5 minute quadrangles. All quadrangles except Jones Inlet were previously compiled by the Army Map Service. Culture revised by the Geological Survey. Hydrography compiled from USC&GS charts 579A (1953), 579B (1953), 542 (1955) and 1215 (1947). The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD27 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. USGS maps are typical topographic maps portraying both natural and manmade features. They show and name works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. They also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief is shown with standard contour intervals of 10 and 20 feet; depths are shown with contours and soundings. Please pay close attention to map collar information on projections, spheroid, sources, dates, and keys to grid numbering and other numbers which appear inside the neatline. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the United States Geological Survey 7.5 minute topographic sheet map entitled: New York and vicinity : Sandy Hook, N.J.-N.Y., 1954. It is part of an 8 sheet map set covering the metropolitan New York City area. It was published in 1961. Scale 1:24,000. The source map was prepared by the Geological Survey from 1:24,000-scale maps of Sandy Hook, Keyport, Marlboro, and Long Branch 1954 7.5 minute quadrangles compiled by the Army Map Service. Culture revised by the Geological Survey. Hydrography compiled from USC&GS charts 286, 369, and 824. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD27 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. USGS maps are typical topographic maps portraying both natural and manmade features. They show and name works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. They also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief is shown with standard contour intervals of 10 and 20 feet; depths are shown with contours and soundings. Please pay close attention to map collar information on projections, spheroid, sources, dates, and keys to grid numbering and other numbers which appear inside the neatline. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the United States Geological Survey 7.5 minute topographic sheet map entitled: New York and vicinity : Plainfield, N.J.-N.Y., 1956. It is part of an 8 sheet map set covering the metropolitan New York City area. It was published in 1961. Scale 1:24,000. The source map was prepared by the Geological Survey from 1:24,000-scale maps of Roselle 1955, Chatham 1955, Plainfield 1955, and Perth Amboy 1956 7.5 minute quadrangles compiled by the Army Map Service. Culture revised by the Geological Survey. Hydrography compiled from USC&GS charts 286 (1954) and 375 (1953). The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD27 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. USGS maps are typical topographic maps portraying both natural and manmade features. They show and name works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. They also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief is shown with standard contour intervals of 10 and 20 feet; depths are shown with contours and soundings. Please pay close attention to map collar information on projections, spheroid, sources, dates, and keys to grid numbering and other numbers which appear inside the neatline. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
We study the global bifurcation of nonlinear Sturm-Liouville problems of the form -(pu')' + qu = lambda a(x)f(u), b(0)u(0) - c(0)u' (0) = 0, b(1)u(1) + c(1)u'(1) = 0 which are not linearizable in any neighborhood of the origin. (c) 2005 Published by Elsevier Ltd.