937 resultados para Intertextuality in the translation
Resumo:
The ribosome is central to protein biosynthesis and the focus of extensive research. Recent biochemical and structural studies, especially detailed crystal structures and high resolution Cryo-EM in different functional states have broadened our understanding of the ribosome and its mode of action. However, the exact mechanism of peptide bond formation and how the ribosome catalyzes this reaction is not yet understood. Also, consequences of direct oxidative stress to the ribosome and its effects on translation have not been studied. So far, no conventional replacement or even removal of the peptidyl transferase center's bases has been able to affect in vitro translation. Significant contribution to the catalytic activity seems to stem from the ribose-phosphate backbone, specifically 2'OH of A2451. Using the technique of atomic mutagenesis, novel unnatural bases can be introduced to any desired position in the 23S rRNA, surpassing conventional mutagenesis and effectively enabling to alter single atoms in the ribosome. Reconstituting ribosomes in vitro using this approach, we replaced universally conserved PTC bases with synthetic counterparts carrying the most common oxidations 8-oxorA, 5-HOrU and 5-HOrC. To investigate the consequent effects on translation, the chemically engineered ribosomes were studied the in various functional assays. Incorporation of different oxidized bases into the 70S ribosome affected the ribosomes in different ways. Depending on the nucleobase modified, the reconstituted ribosomes exhibited radical deceleration of peptide bond formation, decrease of synthesis efficiency or even an increase of translation rate. These results may further our understanding of the residues involved in the peptide bond formation mechanism, as well as the disease-relevant effects of oxydative stress on the translation machinery.
Resumo:
When on 26 May 1662 the founding first stone was laid for a new church on the island Nordstrand at the coast of Schleswig, relics of Teresa of Avila (1515-1582) and of the Dutch Carmelite abbess Maria Margaretha ab Angelis (1605-1658) were inserted. This church was built for Dutch dyke builders who were called to reconstruct the island after its destruction by flood in 1634; coming from a Catholic background and from the Dutch Republic which was at war with Spain at that time, the dyke builders and their families were guaranteed religious freedom in the Lutheran duchy of Holstein. In this paper, the reasons for the choice for the Spanish mystic Teresa of Avila and for the Dutch Carmelite abbess Maria Margaretha are discussed. The latter patroness was never beatified but had died in the smell of holiness; after her death several miracles were ascribed to her. It is understandable that migrants brought relics of their appreciated holy persons who would remind them of their homeland. The paper will first shortly introduce the two patronesses of the church. In the second part, the reasons for this choice will be discussed. Behind this translation of relics not only spiritual reasons played a role. The function of the translation of the saints was first to keep up geographical and political connections with the old country (both Spain and the Netherlands), secondly to perpetuate personal-familial relationships (esp. with Maria Margaretha), thirdly to strengthen the confessional identity in a non-Catholic environment. Fourthly the transfer brought a certain model of Christian life and reform to the new place of living, which in the second part of the 17th century became marked as “Jansenist”. The paper shows the transformation of the island into an enclave of Dutch Catholic culture.
Resumo:
by Adolf Hitler
Resumo:
Initiation factor eIF4G is an essential protein required for initiation of mRNA translation via the 5′ cap-dependent pathway. It interacts with eIF4E (the mRNA 5′ cap-binding protein) and serves as an anchor for the assembly of further initiation factors. With treatment of Saccharomyces cerevisiae with rapamycin or with entry of cells into the diauxic phase, eIF4G is rapidly degraded, whereas initiation factors eIF4E and eIF4A remain stable. We propose that nutritional deprivation or interruption of the TOR signal transduction pathway induces eIF4G degradation.
Resumo:
Several studies have indicated that degradation of certain mRNAs is tightly coupled to their translation, whereas, in contrast, other observations suggested that translation can be inhibited without changing the stability of the mRNA. We have addressed this question with the use of altered CYC1 alleles, which encode iso-1-cytochrome c in the yeast Saccharomyces cerevisiae. The cyc1-1249 mRNA, which lacks all in-frame and out-of-frame AUG triplets, was as stable as the normal mRNA. This finding established that translation is not required for the degradation of CYC1 mRNAs. Furthermore, poly(G)18 tracks were introduced within the CYC1 mRNA translated regions to block exonuclease degradation. The recovery of 3' fragments revealed that the translatable and the AUG-deficient mRNAs are both degraded 5'-->3'. Also, the increased stability of CYC1 mRNAs in xrn1-delta strains lacking Xrn1p, the major 5'-->3' exonuclease, established that the normal and AUG-deficient mRNAs are degraded by the same pathway. In addition, deadenylylation, which activates the action of Xrn1p, occurred at equivalent rates in both normal and AUG-deficient mRNAs. We conclude that translation is not required for the normal degradation of CYC1 mRNAs, and that translatable and untranslated mRNAs are degraded by the same pathway.
Resumo:
This article is the English version of “Traductoras gallegas del siglo XX: Reescribiendo la historia de la traducción desde el género y la nación” by Olga Castro. It was not published on the print version of MonTI for reasons of space. The online version of MonTI does not suffer from these limitations, and this is our way of promoting plurilingualism.
Resumo:
"May 1991"--Leaf [1].
Resumo:
Text consists mostly of tables.
Resumo:
Mode of access: Internet.
Resumo:
From a manuscript in the Bodleian library, Oxford.
Resumo:
[v. 1] Spring.--[v. 2] Summer.--[v. 3] Autumn.--[v. 4] Winter.
Resumo:
Mode of access: Internet.