1000 resultados para Interstate Highway System
Resumo:
"Circular memorandum to: Division Engineers".
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Cover title: Vertical and horizontal clearances of structures.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Cover title.
Resumo:
Bibliography: leaves 32-34.
Resumo:
Chiefly tables.
Resumo:
Iowa fatal crashes and fatalities for the state of Iowa on rural interstate system from 1970-2014.
Resumo:
Advanced Driver Assistance Systems (ADAS) are proving to have huge potential in road safety, comfort, and efficiency. In recent years, car manufacturers have equipped their high-end vehicles with Level 2 ADAS, which are, according to SAE International, systems that combine both longitudinal and lateral active motion control. These automated driving features, while only available in highway scenarios, appear to be very promising towards the introduction of hands-free driving. However, as they rely only on an on-board sensor suite, their continuative operation may be affected by the current environmental conditions: this prevents certain functionalities such as the automated lane change, other than requiring the driver to keep constantly the hands on the steering wheel. The enabling factor for hands-free highway driving proposed by Mobileye is the integration of high-definition maps, thus leading to the so-called Level 2+. This thesis was carried out during an internship in Maserati's Virtual Engineering team. The activity consisted of the design of an L2+ Highway Assist System following the Rapid Control Prototyping approach, starting from the definition of the requirements up to the real-time implementation and testing on a simulator of the brand new compact SUV Maserati Grecale. The objective was to enhance the current Level 2 highway driving assistance system with hands-free driving capability; for this purpose an Autonomous Lane Change functionality has been designed, proposing a Model Predictive Control-based decision-maker, in charge of assessing both the feasibility and convenience of performing a lane-change maneuver. The result is a Highway Assist System capable of driving the vehicle in a traffic scenario safely and efficiently, never requiring driver intervention.
Resumo:
Currently, the quality of the Indonesian national road network is inadequate due to several constraints, including overcapacity and overloaded trucks. The high deterioration rate of the road infrastructure in developing countries along with major budgetary restrictions and high growth in traffic have led to an emerging need for improving the performance of the highway maintenance system. However, the high number of intervening factors and their complex effects require advanced tools to successfully solve this problem. The high learning capabilities of Data Mining (DM) are a powerful solution to this problem. In the past, these tools have been successfully applied to solve complex and multi-dimensional problems in various scientific fields. Therefore, it is expected that DM can be used to analyze the large amount of data regarding the pavement and traffic, identify the relationship between variables, and provide information regarding the prediction of the data. In this paper, we present a new approach to predict the International Roughness Index (IRI) of pavement based on DM techniques. DM was used to analyze the initial IRI data, including age, Equivalent Single Axle Load (ESAL), crack, potholes, rutting, and long cracks. This model was developed and verified using data from an Integrated Indonesia Road Management System (IIRMS) that was measured with the National Association of Australian State Road Authorities (NAASRA) roughness meter. The results of the proposed approach are compared with the IIRMS analytical model adapted to the IRI, and the advantages of the new approach are highlighted. We show that the novel data-driven model is able to learn (with high accuracy) the complex relationships between the IRI and the contributing factors of overloaded trucks
Resumo:
The Office of Transportation Data, in cooperation with the Federal Highway Administration, prepares this biennial traffic report. This report is used by federal, state, and local governmental agencies in determining highway needs, construction priorities, route location and environmental impact studies, and the application of appropriate design standards. The general public uses this information in determining the amount of traffic that passes a given area as they make their development plans and propose land use changes. The above reflects only a few of the many technical uses for this data.