998 resultados para Interface modification
Resumo:
This paper presents a comparative study to evaluate the usability of a tag-based interface alongside the present 'conventional' interface in the Australian mobile banking context. The tag-based interface is based on user-assigned tags to banking resources with support for different types of customization. And the conventional interface is based on standard HTML objects such as select boxes, lists, tables and etc, with limited customization. A total of 20 banking users evaluated both interfaces based on a set of tasks and completed a post-test usability questionnaire. Efficiency, effectiveness, and user satisfaction were considered to evaluate the usability of the interfaces. Results of the evaluation show improved usability in terms of user satisfaction with the tag-based interface compared to the conventional interface. This outcome is more apparent among participants without prior mobile banking experience. Therefore, there is a potential for the tag-based interface to improve user satisfaction of mobile banking and also positively affect the adoption and acceptance of mobile banking, particularly in Australia.
Resumo:
Situated on Youtube, and shown in various locations. In this video we show a 3D mock up of a personal house purchasing process. A path traversal metaphor is used to give a sense of progression along the process stages. The intention is to be able to use console devices like an Xbox to consume business processes. This is so businesses can expose their internal processes to consumers using sophisticated user interfaces. The demonstrator was developed using Microsoft XNA, with assistance from the Suncorp Bank and the Smart Services CRC. More information at: www.bpmve.org
Resumo:
With a monolayer honeycomb-lattice of sp2-hybridized carbon atoms, graphene has demonstrated exceptional electrical, mechanical and thermal properties. One of its promising applications is to create graphene-polymer nanocomposites with tailored mechanical and physical properties. In general, the mechanical properties of graphene nanofiller as well as graphene-polymer interface govern the overall mechanical performance of graphene-polymer nanocomposites. However, the strengthening and toughening mechanisms in these novel nanocomposites have not been well understood. In this work, the deformation and failure of graphene sheet and graphene-polymer interface were investigated using molecular dynamics (MD) simulations. The effect of structural defects on the mechanical properties of graphene and graphene-polymer interface was investigated as well. The results showed that structural defects in graphene (e.g. Stone-Wales defect and multi-vacancy defect) can significantly deteriorate the fracture strength of graphene but may still make full utilization of corresponding strength of graphene and keep the interfacial strength and the overall mechanical performance of graphene-polymer nanocomposites.
Resumo:
Trauma education, both formal and informal, is an essential component of professional development for both nursing anf medical staff working in the Emergency Department. Ideally, this education will be multidisciplinary. As a result, the day to day aspects of emergency care such and team work and crew resource management are maintained.
Resumo:
It has long been a concern that the wider uptake of the YAWL environment may have been hindered by the usability issues identified in the current Process Editor. As a consequence, it was decided that the Editor be completely rewritten to address those usability limitations. The result has been the implementation of a new YAWL Process Editor architecture that creates a clear separation between the User Interface component layer and the core processing back end, facilitating the redesign of the default user interface. This new architecture also supports the development of multiple User Interface front ends for specific contexts that take advantage of the core capabilities the new Editor architecture has to offer.
Resumo:
Finite Element modelling of bone fracture fixation systems allows computational investigation of the deformation response of the bone to load. Once validated, these models can be easily adapted to explore changes in design or configuration of a fixator. The deformation of the tissue within the fracture gap determines its healing and is often summarised as the stiffness of the construct. FE models capable of reproducing this behaviour would provide valuable insight into the healing potential of different fixation systems. Current model validation techniques lack depth in 6D load and deformation measurements. Other aspects of the FE model creation such as the definition of interfaces between components have also not been explored. This project investigated the mechanical testing and FE modelling of a bone– plate construct for the determination of stiffness. In depth 6D measurement and analysis of the generated forces, moments and movements showed large out of plane behaviours which had not previously been characterised. Stiffness calculated from the interfragmentary movement was found to be an unsuitable summary parameter as the error propagation is too large. Current FE modelling techniques were applied in compression and torsion mimicking the experimental setup. Compressive stiffness was well replicated, though torsional stiffness was not. The out of plane behaviours prevalent in the experimental work were not replicated in the model. The interfaces between the components were investigated experimentally and through modification to the FE model. Incorporation of the interface modelling techniques into the full construct models had no effect in compression but did act to reduce torsional stiffness bringing it closer to that of the experiment. The interface definitions had no effect on out of plane behaviours, which were still not replicated. Neither current nor novel FE modelling techniques were able to replicate the out of plane behaviours evident in the experimental work. New techniques for modelling loads and boundary conditions need to be developed to mimic the effects of the entire experimental system.
Resumo:
This thesis is a forward study of alumina nanofiber material in developing its applications biology field. It demonstrates that by applying proper modification strategy, alumina nanofiber is a promising material in protein purification and enzyme immobilization. The hydrophobic modification has dramatically improved the rejecting of protein molecular in purification system. On the other hand, utilisation of cross-linking agent firmly combined alumina nanofiber and target enzyme for immobilisation purpose. This step of progress could lead to inspiration of alumina nanofiber’s application in various area.
Resumo:
With persisting health inequalities across and between diverse populations, health promotion must consider its engagement with the culture concept in achieving better health for all. By way of a conversation between an Indigenous and non-Indigenous health promotion practitioner, this unique presentation will critically examine the cultural practice of health promotion for Indigenous Australians. Culture becomes the central tenant of this conversation – but not culture in the sense of something to “fix” to improve Indigenous health, or import to make mainstream practices “culturally appropriate”. Rather, the somewhat invisible culture of Australian health promotion practice itself is highlighted. The enthusiasm of mainstream health promotion practice for risk and reductionism supplants biological determinism with a cultural determinism that constructs culture as illness-producing. This is in contrast to Indigenous perspectives of culture in which it is described as integral to individual and community health and well-being. Whilst empowerment features strongly within global health promotion discourses, the preoccupation of health promotion with the inherent deficit/behavioural change approach is an all too convenient distraction from the broader structural factors impacting on the health of Indigenous Australians. That Indigenous Australians have not benefitted from successful public health policy interventions in the same way as the general population is in itself revealing of the culture of health promotion practice in Australia and it is somewhat ironic that the health promotion fraternity seems not to have questioned its own practice. This conversation aims to encourage health promotion practitioners, researchers and policy makers to interrogate the cultural assumptions of their own practice and of the public health system they are part of and consider how to embed and empower the voices and experiences of those who are ‘culturally othered’ within health promotion practice.
Resumo:
Balancing the competing interests of autonomy and protection of individuals is an escalating challenge confronting an ageing Australian society. Legal and medical professionals are increasingly being asked to determine whether individuals are legally competent/capable to make their own testamentary and substitute decision-making, that is financial and/or personal/health care, decisions. No consistent and transparent competency/capacity assessment paradigm currently exists in Australia. Consequently, assessments are currently being undertaken on an ad hoc basis which is concerning as Australia’s population ages and issues of competency/capacity increase. The absence of nationally accepted competency/capacity assessment guidelines and supporting principles results in legal and medical professionals involved with competency/capacity assessment implementing individual processes tailored to their own abilities. Legal and medical approaches differ both between and within the professions. The terminology used also varies. The legal practitioner is concerned with whether the individual has the legal ability to make the decision. A medical practitioner assesses fluctuations in physical and mental abilities. The problem is that the terms competency and capacity are used interchangeably resulting in confusion about what is actually being assessed. The terminological and methodological differences subsequently create miscommunication and misunderstanding between the professions. Consequently, it is not necessarily a simple solution for a legal professional to seek the opinion of a medical practitioner when assessing testamentary and/or substitute decision-making competency/capacity. This research investigates the effects of the current inadequate testamentary and substitute decision-making assessment paradigm and whether there is a more satisfactory approach. This exploration is undertaken within a framework of therapeutic jurisprudence which promotes principles fundamentally important in this context. Empirical research has been undertaken to first, explore the effects of the current process with practising legal and medical professionals; and second, to determine whether miscommunication and misunderstanding actually exist between the professions such that it gives rise to a tense relationship which is not conducive to satisfactory competency/capacity assessments. The necessity of reviewing the adequacy of the existing competency/capacity assessment methodology in the testamentary and substitute decision-making domain will be demonstrated and recommendations for the development of a suitable process made.
Resumo:
Background Standard operating procedures state that police officers should not drive while interacting with their mobile data terminal (MDT) which provides in-vehicle information essential to police work. Such interactions do however occur in practice and represent a potential source of driver distraction. The MDT comprises visual output with manual input via touch screen and keyboard. This study investigated the potential for alternative input and output methods to mitigate driver distraction with specific focus on eye movements. Method Nineteen experienced drivers of police vehicles (one female) from the NSW Police Force completed four simulated urban drives. Three drives included a concurrent secondary task: imitation licence plate search using an emulated MDT. Three different interface methods were examined: Visual-Manual, Visual-Voice, and Audio-Voice (“Visual” and “Audio” = output modality; “Manual” and “Voice” = input modality). During each drive, eye movements were recorded using FaceLAB™ (Seeing Machines Ltd, Canberra, ACT). Gaze direction and glances on the MDT were assessed. Results The Visual-Voice and Visual-Manual interfaces resulted in a significantly greater number of glances towards the MDT than Audio-Voice or Baseline. The Visual-Manual and Visual-Voice interfaces resulted in significantly more glances to the display than Audio-Voice or Baseline. For longer duration glances (>2s and 1-2s) the Visual-Manual interface resulted in significantly more fixations than Baseline or Audio-Voice. The short duration glances (<1s) were significantly greater for both Visual-Voice and Visual-Manual compared with Baseline and Audio-Voice. There were no significant differences between Baseline and Audio-Voice. Conclusion An Audio-Voice interface has the greatest potential to decrease visual distraction to police drivers. However, it is acknowledged that an audio output may have limitations for information presentation compared with visual output. The Visual-Voice interface offers an environment where the capacity to present information is sustained, whilst distraction to the driver is reduced (compared to Visual-Manual) by enabling adaptation of fixation behaviour.
Resumo:
This study investigates the impact of polystyrene sodium sulfonate (PolyNaSS) grafting onto the osseo-integration of a polyethylene terephthalate artificial ligament (Ligament Advanced Reinforcement System, LARS™) used for Anterior Cruciate Ligament (ACL). The performance of grafted and non-grafted ligaments was assessed in vitro by culturing human osteoblasts under osteogenic induction and this demonstrated that the surface modification was capable of up-regulating the secretion of ALP and induced higher level of mineralisation as measured 6 weeks post-seeding by Micro-Computed Tomography. Grafted and non-grafted LARS™ were subsequently implanted in an ovine model for ACL reconstruction and the ligament-to-bone interface was evaluated by histology and biomechanical testings 3 and 12 months post-implantation. The grafted ligaments exhibited more frequent direct ligament-to-bone contact and bone formation in the core of the ligament at the later time point than the non-grafted specimens, the grafting also significantly reduced the fibrous encapsulation of the ligament 12 months post-implantation. However, this improved osseo-integration was not translated into a significant increase in the biomechanical pull-out loads. These results provide evidences that PolyNaSS grafting improved the osseo-integration of the artificial ligament within the bone tunnels. This might positively influence the outcome of the surgical reconstructions, as higher ligament stability is believed to limit micro-movement and therefore permits earlier and enhanced healing.
Resumo:
Development and application of inorganic adsorbent materials have been continuously investigated due to their variability and versatility. This Master thesis has expanded the knowledge in the field of adsorption targeting radioactive iodine waste and proteins using modified inorganic materials. Industrial treatment of radioactive waste and safety disposal of nuclear waste is a constant concern around the world with the development of radioactive materials applications. To address the current problems, laminar titanate with large surface area (143 m2 g−1) was synthesized from inorganic titanium compounds by hydrothermal reactions at 433 K. Ag2O nanocrystals of particle size ranging from 5–30 nm were anchored on the titanate lamina surface which has crystallographic similarity to that of Ag2O nanocrystals. Therefore, the deposited Ag2O nanocrystals and titanate substrate could join together at these surfaces between which there forms a coherent interface. Such coherence between the two phases reduces the overall energy by minimizing surface energy and maintains the Ag2O nanocrystals firmly on the outer surface of the titanate structure. The combined adsorbent was then applied as efficient adsorbent to remove radioactive iodine from water (one gram adsorbent can capture up to 3.4 mmol of I- anions) and the composite adsorbent can be recovered easily for safe disposal. The structure changes of the titanate lamina and the composite adsorbent were characterized via various techniques. The isotherm and kinetics of iodine adsorption, competitive adsorption and column adsorption using the adsorbent were studied to determine the iodine removal abilities of the adsorbent. It is shown that the adsorbent exhibited excellent trapping ability towards iodine in the fix-bed column despite the presence of competitive ions. Hence, Ag2O deposited titanate lamina could serve as an effective adsorbent for removing iodine from radioactive waste. Surface hydroxyl group of the inorganic materials is widely applied for modification purposes and modification of inorganic materials for biomolecule adsorption can also be achieved. Specifically, γ-Al2O3 nanofibre material is converted via calcinations from boehmite precursor which is synthesised by hydrothermal chemical reactions under directing of surfactant. These γ-Al2O3 nanofibres possess large surface area (243 m2 g-1), good stability under extreme chemical conditions, good mechanical strength and rich surface hydroxyl groups making it an ideal candidate in industrialized separation column. The fibrous morphology of the adsorbent also guarantees facile recovery from aqueous solution under both centrifuge and sedimentation approaches. By chemically bonding the dyes molecules, the charge property of γ-Al2O3 is changed in the aim of selectively capturing of lysozyme from chicken egg white solution. The highest Lysozyme adsorption amount was obtained at around 600 mg/g and its proportion is elevated from around 5% to 69% in chicken egg white solution. It was found from the adsorption test under different solution pH that electrostatic force played the key role in the good selectivity and high adsorption rate of surface modified γ-Al2O3 nanofibre adsorbents. Overall, surface modified fibrous γ-Al2O3 could be applied potentially as an efficient adsorbent for capturing of various biomolecules.
Resumo:
Police in-vehicle systems include a visual output mobile data terminal (MDT) with manual input via touch screen and keyboard. This study investigated the potential for voice-based input and output modalities for reducing subjective workload of police officers while driving. Nineteen experienced drivers of police vehicles (one female) from New South Wales (NSW) Police completed four simulated urban drives. Three drives included a concurrent secondary task: an imitation licence number search using an emulated MDT. Three different interface output-input modalities were examined: Visual-Manual, Visual-Voice, and Audio-Voice. Following each drive, participants rated their subjective workload using the NASA - Raw Task Load Index and completed questions on acceptability. A questionnaire on interface preferences was completed by participants at the end of their session. Engaging in secondary tasks while driving significantly increased subjective workload. The Visual-Manual interface resulted in higher time demand than either of the voice-based interfaces and greater physical demand than the Audio-Voice interface. The Visual-Voice and Audio-Voice interfaces were rated easier to use and more useful than the Visual-Manual interface, although not significantly different from each other. Findings largely echoed those deriving from the analysis of the objective driving performance data. It is acknowledged that under standard procedures, officers should not drive while performing tasks concurrently with certain invehicle policing systems; however, in practice this sometimes occurs. Taking action now to develop voice-based technology for police in-vehicle systems has potential to realise visions for potentially safer and more efficient vehicle-based police work.
Resumo:
Boron nitride nanotubes were functionalized by microperoxidase-11 in aqueous media, showing improved catalytic performance due to a strong electron coupling 10 between the active centre of microperoxidase-11 and boron nitride nanotubes. One main application challenge of enzymes as biocatalysts is molecular aggregation in the aqueous solution. This issue is addressed by immobilization of enzymes on solid supports which 15 can enhance enzyme stability and facilitate separation, and recovery for reuse while maintaining catalytic activity and selectivity. The protein-nanoparticle interactions play a key role in bio-nanotechnology and emerge with the development of nanoparticle-protein “corona”. Bio-molecular coronas provide a 20 unique biological identity of nanosized materials.1, 2 As a structural analogue to carbon nanotubes (CNTs), Boron nitride nanotubes have boron and nitrogen atoms distributed equally in hexagonal rings and exhibit excellent mechanical strength, unique physical properties, and chemical stability at high-temperatures. 25 The chemical inertness of BN materials suits to work in hazardous environments, making them an optimal candidate in practical applications in biological and medical field.3, 4
Resumo:
The chemically reversible solid−solid phase transformation of a TCNQ-modified glassy carbon, indium tin oxide, or metal electrode into Co\[TCNQ]2(H2O)2 material in the presence of Co2+(aq) containing electrolytes has been induced and monitored electrochemically. Voltammetric data reveal that the TCNQ/Co\[TCNQ]2(H2O)2 interconversion process is independent of electrode material and identity of cobalt electrolyte anion. However, a marked dependence on electrolyte concentration, scan rate, and method of electrode modification (drop casting or mechanical attachment) is found. Cyclic voltammetric and double potential step chronoamperometric measurements confirm that formation of Co\[TCNQ]2(H2O)2 occurs through a rate-determining nucleation and growth process that initially involves incorporation of Co2+(aq) ions into the reduced TCNQ crystal lattice at the TCNQ|electrode|electrolyte interface. Similarly, the reverse (oxidation) process, which involves transformation of solid Co\[TCNQ]2(H2O)2 back to parent TCNQ crystals, also is controlled by nucleation−growth kinetics. The overall chemically reversible process that represents this transformation is described by the reaction: 2TCNQ0(s) + 2e- + Co2+(aq) + 2H2O \[Co(TCNQ)2(H2O)2](s). Ex situ SEM images illustrated that this reversible TCNQ/Co\[TCNQ]2(H2O)2 conversion process is accompanied by drastic size and morphology changes in the parent solid TCNQ. In addition, different sizes of needle-shaped nanorod/nanowire crystals of Co\[TCNQ]2(H2O)2 are formed depending on the method of surface immobilization.