980 resultados para Intensity modulated radiotherapy
Resumo:
The current standard treatment for head and neck cancer at our institution uses intensity-modulated x-ray therapy (IMRT), which improves target coverage and sparing of critical structures by delivering complex fluence patterns from a variety of beam directions to conform dose distributions to the shape of the target volume. The standard treatment for breast patients is field-in-field forward-planned IMRT, with initial tangential fields and additional reduced-weight tangents with blocking to minimize hot spots. For these treatment sites, the addition of electrons has the potential of improving target coverage and sparing of critical structures due to rapid dose falloff with depth and reduced exit dose. In this work, the use of mixed-beam therapy (MBT), i.e., combined intensity-modulated electron and x-ray beams using the x-ray multi-leaf collimator (MLC), was explored. The hypothesis of this study was that addition of intensity-modulated electron beams to existing clinical IMRT plans would produce MBT plans that were superior to the original IMRT plans for at least 50% of selected head and neck and 50% of breast cases. Dose calculations for electron beams collimated by the MLC were performed with Monte Carlo methods. An automation system was created to facilitate communication between the dose calculation engine and the treatment planning system. Energy and intensity modulation of the electron beams was accomplished by dividing the electron beams into 2x2-cm2 beamlets, which were then beam-weight optimized along with intensity-modulated x-ray beams. Treatment plans were optimized to obtain equivalent target dose coverage, and then compared with the original treatment plans. MBT treatment plans were evaluated by participating physicians with respect to target coverage, normal structure dose, and overall plan quality in comparison with original clinical plans. The physician evaluations did not support the hypothesis for either site, with MBT selected as superior in 1 out of the 15 head and neck cases (p=1) and 6 out of 18 breast cases (p=0.95). While MBT was not shown to be superior to IMRT, reductions were observed in doses to critical structures distal to the target along the electron beam direction and to non-target tissues, at the expense of target coverage and dose homogeneity. ^
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade Gama, Programa de Pós-Graduação em Engenharia Biomédica, 2015.
Resumo:
A new steady state method for determination of the electron diffusion length in dye-sensitized solar cells (DSCs) is described and illustrated with data obtained using cells containing three different types of electrolyte. The method is based on using near-IR absorbance methods to establish pairs of illumination intensity for which the total number of trapped electrons is the same at open circuit (where all electrons are lost by interfacial electron transfer) as at short circuit (where the majority of electrons are collected at the contact). Electron diffusion length values obtained by this method are compared with values derived by intensity modulated methods and by impedance measurements under illumination. The results indicate that the values of electron diffusion length derived from the steady state measurements are consistently lower than the values obtained by the non steady-state methods. For all three electrolytes used in the study, the electron diffusion length was sufficiently high to guarantee electron collection efficiencies greater than 90%. Measurement of the trap distributions by near-IR absorption confirmed earlier observations of much higher electron trap densities for electrolytes containing Li+ ions. It is suggested that the electron trap distributions may not be intrinsic properties of the TiO2 nanoparticles, but may be associated with electron-ion interactions.
Resumo:
This study investigated a potential source of inaccuracy for diode measurements in modulated beams; the effect of diode housing asymmetry on measurement results. The possible effects of diode housing asymmetry on the measurement of steep dose gradients were evaluated by measuring 5x5 cm2 beam profiles, with three cylindrical diodes and two commonly used ionization chambers, with each dosimeter positioned in a 3D scanning water tank with its stem perpendicular to the beam axis (horizontal) and parallel to the direction of scanning. The resulting profiles were used to compare the penumbrae measured with the diode stem pointing into (equivalent to a “stem-first” setup) and out of the field (equivalent to a “stem-last” setup) in order to evaluate the effects of dosimeter alignment and thereby identify the effects of dosimeter asymmetry. The stem-first and stem-last orientations resulted in differences of up to 0.2 mm in the measured 20-80% penumbra widths and differences of up to 0.4 mm in the off axis position of the 90% isodose. These differences, which are smaller than previously reported for older model dosimeters, were apparent in the profile results for both diodes and small volume ionization chambers. As an extension to this study, the practical use of all five dosimeters was exemplified by measuring point doses in IMRT test beams. These measurements showed good agreement (within 2%) between the diodes and the small volume ionization chamber, with all of these dosimeters being able to identify a region 3% under-dosage which was not identified by a larger volume (6 mm diameter) ionization chamber. The results of this work should help to remove some of the barriers to the use of diodes for modulated radiotherapy dosimetry in the future.
Resumo:
Mn2+ doped (0-50.0 molar %) ZnS d-dots have been synthesized in water medium by using an environment friendly low cost chemical technique. Tunable dual emission in UV and yellow-orange regions is achieved by tailoring the Mn2+ doping concentration in the host ZnS nanocrystal. The optimum doping concentration for achieving efficient photoluminescence (PL) emission is determined to be similar to 1.10 (at. %) corresponding to 40.0 (molar %) of Mn2+ doping concentration used during synthesis. The mechanism of charge transfer from the host to the dopant leading to the intensity modulated tunable (594-610 nm) yellow-orange PL emission is straightforwardly understood as no capping agent is used. The temperature dependent PL emission measurements are carried out, viz., in 1.10 at. % Mn2+ doped sample and the experimental results are explained by using a theoretical PL emission model. It is found that the ratio of non-radiative to radiative recombination rates is temperature dependent and this phenomenon has not been reported, so far, in Mn2+ doped ZnS system. The colour tuning of the emitted light from the samples are evident from the calculated chromaticity coordinates. UV light irradiation for 150 min in 40.0 (molar %) Mn2+ doped sample shows an enhancement of 33% in PL emission intensity. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4795779]
Resumo:
When it comes to measuring blade-tip clearance or blade-tip timing in turbines, reflective intensity-modulated optical fiber sensors overcome several traditional limitations of capacitive, inductive or discharging probe sensors. This paper presents the signals and results corresponding to the third stage of a multistage turbine rig, obtained from a transonic wind-tunnel test. The probe is based on a trifurcated bundle of optical fibers that is mounted on the turbine casing. To eliminate the influence of light source intensity variations and blade surface reflectivity, the sensing principle is based on the quotient of the voltages obtained from the two receiving bundle legs. A discrepancy lower than 3% with respect to a commercial sensor was observed in tip clearance measurements. Regarding tip timing measurements, the travel wave spectrum was obtained, which provides the average vibration amplitude for all blades at a particular nodal diameter. With this approach, both blade-tip timing and tip clearance measurements can be carried out simultaneously. The results obtained on the test turbine rig demonstrate the suitability and reliability of the type of sensor used, and suggest the possibility of performing these measurements in real turbines under real working conditions.
Resumo:
Respiration-induced target motion is a major problem in intensity-modulated radiation therapy. Beam segments are delivered serially to form the total dose distribution. In the presence of motion, the spatial relation between dose deposition from different segments will be lost. Usually, this results in over-and underdosage. Besides such interplay effects between target motion and dynamic beam delivery as known from photon therapy, changes in internal density have an impact on delivered dose for intensity-modulated charged particle therapy. In this study, we have analysed interplay effects between raster scanned carbon ion beams and target motion. Furthermore, the potential of an online motion strategy was assessed in several simulations. An extended version of the clinical treatment planning software was used to calculate dose distributions to moving targets with and without motion compensation. For motion compensation, each individual ion pencil beam tracked the planned target position in the lateral aswell as longitudinal direction. Target translations and rotations, including changes in internal density, were simulated. Target motion simulating breathing resulted in severe degradation of delivered dose distributions. For example, for motion amplitudes of +/- 15 mm, only 47% of the target volume received 80% of the planned dose. Unpredictability of resulting dose distributions was demonstrated by varying motion parameters. On the other hand, motion compensation allowed for dose distributions for moving targets comparable to those for static targets. Even limited compensation precision (standard deviation similar to 2 mm), introduced to simulate possible limitations of real-time target tracking, resulted in less than 3% loss in dose homogeneity.
Resumo:
We report a high molar extinction coefficient metal-free sensitizer composed of a triarylamine donor in combination with the 2-(2,2'-bithiophen-5-yl)acrylonitrile conjugation unit and cyanoacrylic acid as an acceptor. In conjugation with a volatile acetonitrile-based electrolyte or a solvent-free ionic liquid electrolyte, we have fabricated efficient dye-sensitized solar cells showing a corresponding 7.5% or 6.1% efficiency measured under the air mass 1.5 global sunlight. The ionic liquid cell exhibits excellent stability during a 1000 h accelerated test under the light-soaking and thermal dual stress. Intensity-modulated photocurrent and photovolatge spectroscopies were employed along with the transient photoelectrical decay measurements to detail the electron transport in the mesoporous titania films filled with these two electrolytes.
Resumo:
A series of organic D-pi-A sensitizers composed of different triarylamine donors in conjugation with the thienothiophene unit and cyanoacrylic acid as an acceptor has been synthesized at a moderate yield. Through tuning the number of methoxy substituents on the triphenylamine donor, we have gradually red-shifted the absorption of sensitizers to enhance device efficiencies.
Resumo:
Cost-effective organic sensitizers will play a pivotal role in the future large-scale production and application of dye-sensitized solar cells. Here we report two new organic D-pi-A dyes featuring electron-rich 3,4-ethylenedioxythiophene- and 2,2'-bis(3,4-ethylenedioxythiophene)-conjugated linkers, showing a remarkable red-shifting of photocurrent action spectra compared with their thiophene and bithiophene counterparts. On the basis of the 3-f{5'-[N,N-bis(9,9-dimethylfluorene-2-yl)phenyl]-2,2'-bis(3,4-ethylenedioxythiophene)-5-yl}2-cyanoacrylic acid dye, we have set a new efficiency record of 7.6% for solvent-free dye-sensitized solar cells based on metal-free organic sensitizers. Importantly, the cell exhibits an excellent stability, keeping over 92% of its initial efficiency after 1000 h accelerated tests under full sunlight soaking at 60 degrees C. This achievement will considerably encourage further design and exploration of metal-free organic dyes for higher performance dye-sensitized solar cells.
Resumo:
We prepared four new ionic liquids consisting of N-methyl-N-allylpyrrolidinium cation in conjunction with anions including iodide, nitrate, thiocyanate, and dicyanamide, respectively, and measured their physical properties of density, viscosity, and conductivity. Owing to the relatively lower melting point of electroactive N-methyl-N-allylpyrrolidinium iodide, in combination with three other nonelectroactive ionic liquids, we could construct solvent-free electrolytes possessing high iodide concentrations for dye-sensitized solar cells. We correlated temperature-dependent electrolyte viscosity with molar conductivity and triiodide mobility through applying an empirical Walden's rule and a modified Stokes-Einstein equation, respectively. We have further found that these anions (nitrate, thiocyanate, and dicyanamide) have different influences on surface states and electron transport in the mesoporous titania film, resulting in different photovoltages and photocurrents of dye-sensitized solar cells.
Resumo:
The purpose of this study is to compare the 4-year biochemical disease-free survival (BDFS) of patients with prostate cancer (PCa) staged according to multiparametric MRI (mpMRI) and treated with radical prostatectomy (RP) versus intensity-modulated radiation therapy (IMRT) ≥76 Gy ± hormonal therapy (HT).
Resumo:
The rivalry between the men's basketball teams of Duke University and the University of North Carolina-Chapel Hill (UNC) is one of the most storied traditions in college sports. A subculture of students at each university form social bonds with fellow fans, develop expertise in college basketball rules, team statistics, and individual players, and self-identify as a member of a fan group. The present study capitalized on the high personal investment of these fans and the strong affective tenor of a Duke-UNC basketball game to examine the neural correlates of emotional memory retrieval for a complex sporting event. Male fans watched a competitive, archived game in a social setting. During a subsequent functional magnetic resonance imaging session, participants viewed video clips depicting individual plays of the game that ended with the ball being released toward the basket. For each play, participants recalled whether or not the shot went into the basket. Hemodynamic signal changes time locked to correct memory decisions were analyzed as a function of emotional intensity and valence, according to the fan's perspective. Results showed intensity-modulated retrieval activity in midline cortical structures, sensorimotor cortex, the striatum, and the medial temporal lobe, including the amygdala. Positively valent memories specifically recruited processing in dorsal frontoparietal regions, and additional activity in the insula and medial temporal lobe for positively valent shots recalled with high confidence. This novel paradigm reveals how brain regions implicated in emotion, memory retrieval, visuomotor imagery, and social cognition contribute to the recollection of specific plays in the mind of a sports fan.
Resumo:
Purpose
Recent in vitro results have shown significant contributions to cell killing from signaling effects at doses that are typically used in radiation therapy. This study investigates whether these in vitro observations can be reconciled with in vivo knowledge and how signaling may have an impact on future developments in radiation therapy.
Methods and Materials
Prostate cancer treatment plans were generated for a series of 10 patients using 3-dimensional conformal therapy, intensity modulated radiation therapy (IMRT), and volumetric modulated arc therapy techniques. These plans were evaluated using mathematical models of survival following modulated radiation exposures that were developed from in vitro observations and incorporate the effects of intercellular signaling. The impact on dose-volume histograms and mean doses were evaluated by converting these survival levels into "signaling-adjusted doses" for comparison.
Results
Inclusion of intercellular communication leads to significant differences between the signalling-adjusted and physical doses across a large volume. Organs in low-dose regions near target volumes see the largest increases, with mean signaling-adjusted bladder doses increasing from 23 to 33 Gy in IMRT plans. By contrast, in high-dose regions, there is a small decrease in signaling-adjusted dose due to reduced contributions from neighboring cells, with planning target volume mean doses falling from 74 to 71 Gy in IMRT. Overall, however, the dose distributions remain broadly similar, and comparisons between the treatment modalities are largely unchanged whether physical or signaling-adjusted dose is compared. Conclusions Although incorporating cellular signaling significantly affects cell killing in low-dose regions and suggests a different interpretation for many phenomena, their effect in high-dose regions for typical planning techniques is comparatively small. This indicates that the significant signaling effects observed in vitro are not contradicted by comparison with clinical observations. Future investigations are needed to validate these effects in vivo and to quantify their ranges and potential impact on more advanced radiation therapy techniques.
Resumo:
Purpose. To investigate the robustness of single vocal cord intensity modulated radiation therapy (IMRT) treatment plans for set-up errors, respiration, and deformation. Material and methods. Four-dimensional computed tomography (4D-CT) scans of 10 early glottic carcinoma patients, previously treated with conventional techniques, were used in this simulation study. For each patient a pre-treatment 4D-CT was used for IMRT planning, generating a reference dose distribution. Prescribed PTV dose was 66 Gy. The impact of systematic set-up errors was simulated by applying shifts of ± 2 mm to the planning CT scans, followed by dose re-calculation with original beam segments, MUs, etc. Effects of respiration and deformation were determined utilizing extreme inhale and exhale CT scans, and repeat scans acquired after 22 Gy, 44 Gy, and 66 Gy, respectively. All doses were calculated using Monte Carlo dose simulations. Results. Considering all investigated geometrical perturbations, reductions in the clinical target volume (CTV) V95%, D98%, D2%, and generalized equivalent uniform dose (gEUD) were limited to 1.2 ± 2.2%, 2.4 ± 2.9%, 0.2 ± 1.8%, and 0.6 ± 1.1 Gy, respectively. The near minimum dose, D98%, was always higher than 89%, and gEUD always remained higher than 66 Gy. Planned contra-lateral (CL) vocal cord DMean, gEUD, and V40 Gy were 38.2 ± 6.0 Gy, 43.4 ± 5.6 Gy, and 42.7 ± 14.9%. With perturbations these values changed by -0.1 ± 4.3 Gy, 0.1 ± 4.0 Gy, and -1.0 ± 9.6%, respectively. Conclusions. On average, CTV dose reductions due to geometrical perturbations were very low, and sparing of the CL vocal cord was maintained. In a few observations (6 of 103 simulated situations), the near-minimum CTV-dose was around 90%, requiring attention in deciding on a future clinical protocol.