994 resultados para Integração temporal
Resumo:
Sediment samples were taken from six sampling sites in Bramble Bay, Queensland, Australia between February and November in 2012. They were analysed for a range of heavy metals including Al, Fe, Mn, Ti, Ce, Th, U, V, Cr, Co, Ni, Cu, Zn, As, Cd, Sb, Te, Hg, Tl and Pb. Fraction analysis, enrichment factors and Principal Component Analysis –Absolute Principal Component Scores (PCA-APCS) were carried out in order to assess metal pollution, potential bioavailability and source apportionment. Cr and Ni exceeded the Australian Interim Sediment Quality Guidelines at some sampling sites, while Hg was found to be the most enriched metal. Fraction analysis identified increased weak acid soluble Hg and Cd during the sampling period. Source apportionment via PCA-APCS found four sources of metals pollution, namely, marine sediments, shipping, antifouling coatings and a mixed source. These sources need to be considered in any metal pollution control measure within Bramble Bay.
Resumo:
Rods, cones and melanopsin containing intrinsically photosensitive retinal ganglion cells (ipRGCs) operate in concert to regulate pupil diameter. The temporal properties of intrinsic ipRGC signalling are distinct to those of rods and cones, including longer latencies and sustained signalling after light offset. We examined whether the melanopsin mediated post-illumination pupil response (PIPR) and pupil constriction were dependent upon the inter-stimulus interval (ISI) between successive light pulses and the temporal frequency of sinusoidal light stimuli. Melanopsin excitation was altered by variation of stimulus wavelength (464 nm and 638 nm lights) and irradiance (11.4 and 15.2 log photons cm(-2) s(-1)). We found that 6s PIPR amplitude was independent of ISI and temporal frequency for all melanopsin excitation levels, indicating complete summation. In contrast to the PIPR, the maximum pupil constriction increased with increasing ISI with high and low melanopsin excitation, but time to minimum diameter was slower with high melanopsin excitation only. This melanopsin response to briefly presented pulses (16 and 100 ms) slows the temporal response of the maximum pupil constriction. We also demonstrate that high melanopsin excitation attenuates the phasic peak-trough pupil amplitude compared to conditions with low melanopsin excitation, indicating an interaction between inner and outer retinal inputs to the pupil light reflex. We infer that outer retina summation is important for rapidly controlling pupil diameter in response to short timescale fluctuations in illumination and may occur at two potential sites, one that is presynaptic to extrinsic photoreceptor input to ipRGCs, or another within the pupil control pathway if ipRGCs have differential temporal tuning to extrinsic and intrinsic signalling.
Resumo:
The conventional method of attachment of prosthesis involves a socket. A new method relying on osseointegrated fixation has emerged in the last decades. It has significant prosthetic benefits. Only a few studies demonstrated the biomechanical benefits. The ultimate aim of this study was to characterise the functional outcome of individuals with lower limb amputation fitted with osseointegrated fixation, which can be assess through temporal and spatial gait characteristics. The specific objective of this study was to present the key temporal and spatial gait characteristics of individuals with transfemoral amputation (TFA).
Resumo:
The conventional method of attachment of prosthesis involves on a socket. A new method relying on osseointegrated fixation is emerging. It has significant prosthetic benefits. Only a few studies demonstrated the biomechanical benefits. The ultimate aim of this study was to characterise the functional outcome of transfemoral amputees fitted with osseointegrated fixation, which can be assess through temporal and spatial gait characteristics. The specific objective of this preliminary study was to present the key temporal and spatial gait characteristics.
Resumo:
The conventional method of attachment of prosthesis involves on a socket. A new method relying on osseointegrated fixation is emerging. It has significant prosthetic benefits. Only a few studies demonstrated the biomechanical benefits. The specific objective of this study was to present the key temporal and spatial gait characteristics for unilateral amputation. The ultimate aim of this study was to characterise the functional outcome of the individual with transfemoral lower limb amputation fitted with osseointegrated fixation, which can be assess through temporal and spatial gait characteristics.
Resumo:
The dorsal lateral amygdala (LAd) is a vital nucleus for the formation of associations between aversive unconditioned stimuli (US) and neutral stimuli, such as auditory tones, which can become conditioned (CS) to the US through temporal pairing. Important aspects of CS-US associations are believed to occur within the LAd, however relatively little is known about the temporal behavior of local LAd networks. Information about the CS and US enters the LA via a rapid and direct thalamic input and a longer latency cortical path...
Resumo:
Background: Preventing risk factor exposure is vital to reduce the high burden from lung cancer. The leading risk factor for developing lung cancer is tobacco smoking. In Australia, despite apparent success in reducing smoking prevalence, there is limited information on small area patterns and small area temporal trends. We sought to estimate spatio-temporal patterns for lung cancer risk factors using routinely collected population-based cancer data. Methods: The analysis used a Bayesian shared component spatio-temporal model, with male and female lung cancer included separately. The shared component reflected exposure to lung cancer risk factors, and was modelled over 477 statistical local areas (SLAs) and 15 years in Queensland, Australia. Analyses were also run adjusting for area-level socioeconomic disadvantage, Indigenous population composition, or remoteness. Results: Strong spatial patterns were observed in the underlying risk factor exposure for both males (median Relative Risk (RR) across SLAs compared to the Queensland average ranged from 0.48-2.00) and females (median RR range across SLAs 0.53-1.80), with high exposure observed in many remote areas. Strong temporal trends were also observed. Males showed a decrease in the underlying risk across time, while females showed an increase followed by a decrease in the final two years. These patterns were largely consistent across each SLA. The high underlying risk estimates observed among disadvantaged, remote and indigenous areas decreased after adjustment, particularly among females. Conclusion: The modelled underlying exposure appeared to reflect previous smoking prevalence, with a lag period of around 30 years, consistent with the time taken to develop lung cancer. The consistent temporal trends in lung cancer risk factors across small areas support the hypothesis that past interventions have been equally effective across the state. However, this also means that spatial inequalities have remained unaddressed, highlighting the potential for future interventions, particularly among remote areas.
Resumo:
An evolving meditation upon the complex, periodic processes that mark Australia’s seasonality, and our increasing ability to disturb them. By amplifying and shining light upon a myriad of mysterious lives lived in blackness, the work presents a sensuous, deep engagement with the rich, irregular spectras of seasonal forms: whilst hinting at a far less comforting background increasingly framed by anthropogenic climate change. ’Temporal’ uses custom interactive systems, illusionary techniques and real time spatial audio processes that draw upon a rich array of media, including seasonal, nocturnal field recordings sourced in the Bundaberg region and detailed observations of foliage & flowering phases from that region. By drawing inspiration from the subtle transitions between what Europeans once named ‘Summer’ and ‘Autumn’ and the multiple seasons recognised by other cultures, whilst also including bodily disturbances within the work, ’Temporal’ creates a compellingly immersive environment that wraps audiences in luscious yet ominous atmospheres beyond sight and hearing. This work completes a two year long project of dynamic mediated installations that have been presented in Sydney, Beijing, Cairns and Bundanon, that have each been somehow choreographed by environmental cycles; alluding to a new framework for making works that we named ‘Seasonal’. These powerful, responsive & experiential works each draw attention to that which will disappear when biodiverse worlds have descended into an era of permanent darkness – an ‘extinction of human experience’. By tapping into the deeply interlocking seasonal cycles of environments that are themselves intimately linked with social, geographical & political concerns, participating audiences are therefore challenged to see the night, their locality & ecologies in new ways through extending their personal limits of perception, imagery & comprehension.
Resumo:
Classic identity negative priming (NP) refers to the finding that when an object is ignored, subsequent naming responses to it are slower than when it has not been previously ignored (Tipper, S.P., 1985. The negative priming effect: inhibitory priming by ignored objects. Q. J. Exp. Psychol. 37A, 571-590). It is unclear whether this phenomenon arises due to the involvement of abstract semantic representations that the ignored object accesses automatically. Contemporary connectionist models propose a key role for the anterior temporal cortex in the representation of abstract semantic knowledge (e.g., McClelland, J.L., Rogers, T.T., 2003. The parallel distributed processing approach to semantic cognition. Nat. Rev. Neurosci. 4, 310-322), suggesting that this region should be involved during performance of the classic identity NP task if it involves semantic access. Using high-field (4 T) event-related functional magnetic resonance imaging, we observed increased BOLD responses in the left anterolateral temporal cortex including the temporal pole that was directly related to the magnitude of each individual's NP effect, supporting a semantic locus. Additional signal increases were observed in the supplementary eye fields (SEF) and left inferior parietal lobule (IPL).
Resumo:
Lateralization of temporal lobe epilepsy (TLE) is critical for successful outcome of surgery to relieve seizures. TLE affects brain regions beyond the temporal lobes and has been associated with aberrant brain networks, based on evidence from functional magnetic resonance imaging. We present here a machine learning-based method for determining the laterality of TLE, using features extracted from resting-state functional connectivity of the brain. A comprehensive feature space was constructed to include network properties within local brain regions, between brain regions, and across the whole network. Feature selection was performed based on random forest and a support vector machine was employed to train a linear model to predict the laterality of TLE on unseen patients. A leave-one-patient-out cross validation was carried out on 12 patients and a prediction accuracy of 83% was achieved. The importance of selected features was analyzed to demonstrate the contribution of resting-state connectivity attributes at voxel, region, and network levels to TLE lateralization.
Resumo:
This project was a step forward in applying statistical methods and models to provide new insights for more informed decision-making at large spatial scales. The model has been designed to address complicated effects of ecological processes that govern the state of populations and uncertainties inherent in large spatio-temporal datasets. Specifically, the thesis contributes to better understanding and management of the Great Barrier Reef.
Resumo:
Temporal and environmental variation in vocal activity can provide information on avian behaviour and call function not available to short-term experimental studies. Intersexual differences in this variation can provide insight into selection effects. Yet factors influencing vocal behaviour have not been assessed in many birds, even those monitored by acoustic methods. This applies to the New Zealand kiwi (Apterygidae), for which call censuses are used extensively in conservation monitoring, yet which have poorly understood acoustic ecology. We investigated little spotted kiwi Apteryx owenii vocal behaviour over 3 yr, measuring influences on vocal activity in both sexes from time of night, season, weather conditions and lunar cycle. We tested hypotheses that call rate variation reflects call function, foraging efficiency, historic predation risk and variability in sound transmission, and that there are inter-sexual differences in call function. Significant seasonal variation showed that vocalisations were important in kiwi reproduction, and inter-sexual synchronisation of call rates indicated that contact, pair-bonding or resource defence were key functions. All weather variables significantly affected call rates, with elevated calling during increased humidity and ground moisture indicating a relation between vocal activity and foraging conditions. A significant decrease in calling activity on cloudy nights, combined with no moonlight effect, suggests an impact of light pollution in this species. These influences on vocal activity provide insight into kiwi call function, have direct consequences for conservation monitoring of kiwi, and have wider implications in understanding vocal behaviour in a range of nocturnal birds
Resumo:
Dengue has been a major public health concern in Australia since it re-emerged in Queensland in 1992-1993. This study explored spatio-temporal distribution and clustering of locally-acquired dengue cases in Queensland State, Australia and identified target areas for effective interventions. A computerised locally-acquired dengue case dataset was collected from Queensland Health for Queensland from 1993 to 2012. Descriptive spatial and temporal analyses were conducted using geographic information system tools and geostatistical techniques. Dengue hot spots were detected using SatScan method. Descriptive spatial analysis showed that a total of 2,398 locally-acquired dengue cases were recorded in central and northern regions of tropical Queensland. A seasonal pattern was observed with most of the cases occurring in autumn. Spatial and temporal variation of dengue cases was observed in the geographic areas affected by dengue over time. Tropical areas are potential high-risk areas for mosquito-borne diseases such as dengue. This study demonstrated that the locally-acquired dengue cases have exhibited a spatial and temporal variation over the past twenty years in tropical Queensland, Australia. There is a clear evidence for the existence of statistically significant clusters of dengue and these clusters varied over time. These findings enabled us to detect and target dengue clusters suggesting that the use of geospatial information can assist the health authority in planning dengue control activities and it would allow for better design and implementation of dengue management programs.