919 resultados para Integer Least Squares


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los turistas urbanos se caracterizan por ser uno de los segmentos de mayor crecimiento en los mercados turísticos actuales. Monterrey (México), uno de los principales destinos urbanos del país, ha apostado en la actualidad por mejorar su competitividad. Esta investigación se propuso encontrar evidencia acerca de la relación causal de la motivación de viaje sobre la imagen percibida del destino, dos variables importantes por su influencia en la satisfacción de los visitantes. Una revisión de la literatura permitió proponer constructos teóricos integrados en un instrumento para la recogida de datos vía encuesta a una muestra representativa. Por medio del método de regresión y ecuaciones estructurales por mínimos cuadrados parciales (PLS), se identificaron los componentes principales de ambas variables y se obtuvo un modelo explicativo de la imagen percibida del destino en función de la motivación de viaje. Finalmente, se emiten recomendaciones para la gestión del destino urbano en función de los resultados obtenidos. ABSTRACT: Abstract Urban tourists are recognized as one of the fastest growing segments in today’s tourism markets. Monterrey, Mexico, one of the main urban destinations in the country aims at improving its competitiveness. This research work had the purpose of finding evidence on the causal relationship between travel motivation and destination image, two important variables because of their influence on visitors’ satisfaction. A literature review enabled the proposal of a research instrument with theoretically based constructs to gather data through survey from a representative sample. Using regression and structural equations modelling by partial least squares (pls) a set of main components of both variables were identified thus enabling the obtention of a explanatory model of destination image in terms of travel motivations. Finally based on the results some recommendations of tourism management are given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A finite-strain solid–shell element is proposed. It is based on least-squares in-plane assumed strains, assumed natural transverse shear and normal strains. The singular value decomposition (SVD) is used to define local (integration-point) orthogonal frames-of-reference solely from the Jacobian matrix. The complete finite-strain formulation is derived and tested. Assumed strains obtained from least-squares fitting are an alternative to the enhanced-assumed-strain (EAS) formulations and, in contrast with these, the result is an element satisfying the Patch test. There are no additional degrees-of-freedom, as it is the case with the enhanced-assumed-strain case, even by means of static condensation. Least-squares fitting produces invariant finite strain elements which are shear-locking free and amenable to be incorporated in large-scale codes. With that goal, we use automatically generated code produced by AceGen and Mathematica. All benchmarks show excellent results, similar to the best available shell and hybrid solid elements with significantly lower computational cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A finite-strain solid–shell element is proposed. It is based on least-squares in-plane assumed strains, assumed natural transverse shear and normal strains. The singular value decomposition (SVD) is used to define local (integration-point) orthogonal frames-of- reference solely from the Jacobian matrix. The complete finite-strain formulation is derived and tested. Assumed strains obtained from least-squares fitting are an alternative to the enhanced-assumed-strain (EAS) formulations and, in contrast with these, the result is an element satisfying the Patch test. There are no additional degrees-of-freedom, as it is the case with the enhanced- assumed-strain case, even by means of static condensation. Least-squares fitting produces invariant finite strain elements which are shear-locking free and amenable to be incorporated in large-scale codes. With that goal, we use automatically generated code produced by AceGen and Mathematica. All benchmarks show excellent results, similar to the best available shell and hybrid solid elements with significantly lower computational cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two novelties are introduced: (i) a finite-strain semi-implicit integration algorithm compatible with current element technologies and (ii) the application to assumed-strain hexahedra. The Löwdin algo- rithm is adopted to obtain evolving frames applicable to finite strain anisotropy and a weighted least- squares algorithm is used to determine the mixed strain. Löwdin frames are very convenient to model anisotropic materials. Weighted least-squares circumvent the use of internal degrees-of-freedom. Het- erogeneity of element technologies introduce apparently incompatible constitutive requirements. Assumed-strain and enhanced strain elements can be either formulated in terms of the deformation gradient or the Green–Lagrange strain, many of the high-performance shell formulations are corotational and constitutive constraints (such as incompressibility, plane stress and zero normal stress in shells) also depend on specific element formulations. We propose a unified integration algorithm compatible with possibly all element technologies. To assess its validity, a least-squares based hexahedral element is implemented and tested in depth. Basic linear problems as well as 5 finite-strain examples are inspected for correctness and competitive accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper compares the performance of the complex nonlinear least squares algorithm implemented in the LEVM/LEVMW software with the performance of a genetic algorithm in the characterization of an electrical impedance of known topology. The effect of the number of measured frequency points and of measurement uncertainty on the estimation of circuit parameters is presented. The analysis is performed on the equivalent circuit impedance of a humidity sensor.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hyperspectral remote sensing exploits the electromagnetic scattering patterns of the different materials at specific wavelengths [2, 3]. Hyperspectral sensors have been developed to sample the scattered portion of the electromagnetic spectrum extending from the visible region through the near-infrared and mid-infrared, in hundreds of narrow contiguous bands [4, 5]. The number and variety of potential civilian and military applications of hyperspectral remote sensing is enormous [6, 7]. Very often, the resolution cell corresponding to a single pixel in an image contains several substances (endmembers) [4]. In this situation, the scattered energy is a mixing of the endmember spectra. A challenging task underlying many hyperspectral imagery applications is then decomposing a mixed pixel into a collection of reflectance spectra, called endmember signatures, and the corresponding abundance fractions [8–10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. Linear mixing model holds approximately when the mixing scale is macroscopic [13] and there is negligible interaction among distinct endmembers [3, 14]. If, however, the mixing scale is microscopic (or intimate mixtures) [15, 16] and the incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [17], the linear model is no longer accurate. Linear spectral unmixing has been intensively researched in the last years [9, 10, 12, 18–21]. It considers that a mixed pixel is a linear combination of endmember signatures weighted by the correspondent abundance fractions. Under this model, and assuming that the number of substances and their reflectance spectra are known, hyperspectral unmixing is a linear problem for which many solutions have been proposed (e.g., maximum likelihood estimation [8], spectral signature matching [22], spectral angle mapper [23], subspace projection methods [24,25], and constrained least squares [26]). In most cases, the number of substances and their reflectances are not known and, then, hyperspectral unmixing falls into the class of blind source separation problems [27]. Independent component analysis (ICA) has recently been proposed as a tool to blindly unmix hyperspectral data [28–31]. ICA is based on the assumption of mutually independent sources (abundance fractions), which is not the case of hyperspectral data, since the sum of abundance fractions is constant, implying statistical dependence among them. This dependence compromises ICA applicability to hyperspectral images as shown in Refs. [21, 32]. In fact, ICA finds the endmember signatures by multiplying the spectral vectors with an unmixing matrix, which minimizes the mutual information among sources. If sources are independent, ICA provides the correct unmixing, since the minimum of the mutual information is obtained only when sources are independent. This is no longer true for dependent abundance fractions. Nevertheless, some endmembers may be approximately unmixed. These aspects are addressed in Ref. [33]. Under the linear mixing model, the observations from a scene are in a simplex whose vertices correspond to the endmembers. Several approaches [34–36] have exploited this geometric feature of hyperspectral mixtures [35]. Minimum volume transform (MVT) algorithm [36] determines the simplex of minimum volume containing the data. The method presented in Ref. [37] is also of MVT type but, by introducing the notion of bundles, it takes into account the endmember variability usually present in hyperspectral mixtures. The MVT type approaches are complex from the computational point of view. Usually, these algorithms find in the first place the convex hull defined by the observed data and then fit a minimum volume simplex to it. For example, the gift wrapping algorithm [38] computes the convex hull of n data points in a d-dimensional space with a computational complexity of O(nbd=2cþ1), where bxc is the highest integer lower or equal than x and n is the number of samples. The complexity of the method presented in Ref. [37] is even higher, since the temperature of the simulated annealing algorithm used shall follow a log( ) law [39] to assure convergence (in probability) to the desired solution. Aiming at a lower computational complexity, some algorithms such as the pixel purity index (PPI) [35] and the N-FINDR [40] still find the minimum volume simplex containing the data cloud, but they assume the presence of at least one pure pixel of each endmember in the data. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. PPI algorithm uses the minimum noise fraction (MNF) [41] as a preprocessing step to reduce dimensionality and to improve the signal-to-noise ratio (SNR). The algorithm then projects every spectral vector onto skewers (large number of random vectors) [35, 42,43]. The points corresponding to extremes, for each skewer direction, are stored. A cumulative account records the number of times each pixel (i.e., a given spectral vector) is found to be an extreme. The pixels with the highest scores are the purest ones. N-FINDR algorithm [40] is based on the fact that in p spectral dimensions, the p-volume defined by a simplex formed by the purest pixels is larger than any other volume defined by any other combination of pixels. This algorithm finds the set of pixels defining the largest volume by inflating a simplex inside the data. ORA SIS [44, 45] is a hyperspectral framework developed by the U.S. Naval Research Laboratory consisting of several algorithms organized in six modules: exemplar selector, adaptative learner, demixer, knowledge base or spectral library, and spatial postrocessor. The first step consists in flat-fielding the spectra. Next, the exemplar selection module is used to select spectral vectors that best represent the smaller convex cone containing the data. The other pixels are rejected when the spectral angle distance (SAD) is less than a given thresh old. The procedure finds the basis for a subspace of a lower dimension using a modified Gram–Schmidt orthogonalizati on. The selected vectors are then projected onto this subspace and a simplex is found by an MV T pro cess. ORA SIS is oriented to real-time target detection from uncrewed air vehicles using hyperspectral data [46]. In this chapter we develop a new algorithm to unmix linear mixtures of endmember spectra. First, the algorithm determines the number of endmembers and the signal subspace using a newly developed concept [47, 48]. Second, the algorithm extracts the most pure pixels present in the data. Unlike other methods, this algorithm is completely automatic and unsupervised. To estimate the number of endmembers and the signal subspace in hyperspectral linear mixtures, the proposed scheme begins by estimating sign al and noise correlation matrices. The latter is based on multiple regression theory. The signal subspace is then identified by selectin g the set of signal eigenvalue s that best represents the data, in the least-square sense [48,49 ], we note, however, that VCA works with projected and with unprojected data. The extraction of the end members exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. As PPI and N-FIND R algorithms, VCA also assumes the presence of pure pixels in the data. The algorithm iteratively projects data on to a direction orthogonal to the subspace spanned by the endmembers already determined. The new end member signature corresponds to the extreme of the projection. The algorithm iterates until all end members are exhausted. VCA performs much better than PPI and better than or comparable to N-FI NDR; yet it has a computational complexity between on e and two orders of magnitude lower than N-FINDR. The chapter is structure d as follows. Section 19.2 describes the fundamentals of the proposed method. Section 19.3 and Section 19.4 evaluate the proposed algorithm using simulated and real data, respectively. Section 19.5 presents some concluding remarks.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Customer satisfaction and retention are key issues for organizations in today’s competitive market place. As such, much research and revenue has been invested in developing accurate ways of assessing consumer satisfaction at both the macro (national) and micro (organizational) level, facilitating comparisons in performance both within and between industries. Since the instigation of the national customer satisfaction indices (CSI), partial least squares (PLS) has been used to estimate the CSI models in preference to structural equation models (SEM) because they do not rely on strict assumptions about the data. However, this choice was based upon some misconceptions about the use of SEM’s and does not take into consideration more recent advances in SEM, including estimation methods that are robust to non-normality and missing data. In this paper, both SEM and PLS approaches were compared by evaluating perceptions of the Isle of Man Post Office Products and Customer service using a CSI format. The new robust SEM procedures were found to be advantageous over PLS. Product quality was found to be the only driver of customer satisfaction, while image and satisfaction were the only predictors of loyalty, thus arguing for the specificity of postal services

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Customer satisfaction and retention are key issues for organizations in today’s competitive market place. As such, much research and revenue has been invested in developing accurate ways of assessing consumer satisfaction at both the macro (national) and micro (organizational) level, facilitating comparisons in performance both within and between industries. Since the instigation of the national customer satisfaction indices (CSI), partial least squares (PLS) has been used to estimate the CSI models in preference to structural equation models (SEM) because they do not rely on strict assumptions about the data. However, this choice was based upon some misconceptions about the use of SEM’s and does not take into consideration more recent advances in SEM, including estimation methods that are robust to non-normality and missing data. In this paper, both SEM and PLS approaches were compared by evaluating perceptions of the Isle of Man Post Office Products and Customer service using a CSI format. The new robust SEM procedures were found to be advantageous over PLS. Product quality was found to be the only driver of customer satisfaction, while image and satisfaction were the only predictors of loyalty, thus arguing for the specificity of postal services

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A construction algorithm for multioutput radial basis function (RBF) network modelling is introduced by combining a locally regularised orthogonal least squares (LROLS) model selection with a D-optimality experimental design. The proposed algorithm aims to achieve maximised model robustness and sparsity via two effective and complementary approaches. The LROLS method alone is capable of producing a very parsimonious RBF network model with excellent generalisation performance. The D-optimality design criterion enhances the model efficiency and robustness. A further advantage of the combined approach is that the user only needs to specify a weighting for the D-optimality cost in the combined RBF model selecting criterion and the entire model construction procedure becomes automatic. The value of this weighting does not influence the model selection procedure critically and it can be chosen with ease from a wide range of values.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Ciências Cartográficas - FCT

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new technique for the harmonic analysis of current observations is described. It consists in applying a linear band pass filter which separates the various species and removes the contribution of non-tidal effects at intertidal frequencies. The tidal constituents are then evaluated through the method of least squares. In spite of the narrowness of the filter, only three days of data are lost through the filtering procedure and the only requirement on the data is that the time interval between samples be an integer fraction of one day. This technique is illustrated through the analysis of a few French current observations from the English Channel within the framework of INOUT. The characteristics of the main tidal constituents are given.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the last decades the study of integer-valued time series has gained notoriety due to its broad applicability (modeling the number of car accidents in a given highway, or the number of people infected by a virus are two examples). One of the main interests of this area of study is to make forecasts, and for this reason it is very important to propose methods to make such forecasts, which consist of nonnegative integer values, due to the discrete nature of the data. In this work, we focus on the study and proposal of forecasts one, two and h steps ahead for integer-valued second-order autoregressive conditional heteroskedasticity processes [INARCH (2)], and in determining some theoretical properties of this model, such as the ordinary moments of its marginal distribution and the asymptotic distribution of its conditional least squares estimators. In addition, we study, via Monte Carlo simulation, the behavior of the estimators for the parameters of INARCH(2) processes obtained using three di erent methods (Yule- Walker, conditional least squares, and conditional maximum likelihood), in terms of mean squared error, mean absolute error and bias. We present some forecast proposals for INARCH(2) processes, which are compared again via Monte Carlo simulation. As an application of this proposed theory, we model a dataset related to the number of live male births of mothers living at Riachuelo city, in the state of Rio Grande do Norte, Brazil.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the last decades the study of integer-valued time series has gained notoriety due to its broad applicability (modeling the number of car accidents in a given highway, or the number of people infected by a virus are two examples). One of the main interests of this area of study is to make forecasts, and for this reason it is very important to propose methods to make such forecasts, which consist of nonnegative integer values, due to the discrete nature of the data. In this work, we focus on the study and proposal of forecasts one, two and h steps ahead for integer-valued second-order autoregressive conditional heteroskedasticity processes [INARCH (2)], and in determining some theoretical properties of this model, such as the ordinary moments of its marginal distribution and the asymptotic distribution of its conditional least squares estimators. In addition, we study, via Monte Carlo simulation, the behavior of the estimators for the parameters of INARCH(2) processes obtained using three di erent methods (Yule- Walker, conditional least squares, and conditional maximum likelihood), in terms of mean squared error, mean absolute error and bias. We present some forecast proposals for INARCH(2) processes, which are compared again via Monte Carlo simulation. As an application of this proposed theory, we model a dataset related to the number of live male births of mothers living at Riachuelo city, in the state of Rio Grande do Norte, Brazil.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

No estudo de séries temporais, os processos estocásticos usuais assumem que as distribuições marginais são contínuas e, em geral, não são adequados para modelar séries de contagem, pois as suas características não lineares colocam alguns problemas estatísticos, principalmente na estimação dos parâmetros. Assim, investigou-se metodologias apropriadas de análise e modelação de séries com distribuições marginais discretas. Neste contexto, Al-Osh and Alzaid (1987) e McKenzie (1988) introduziram na literatura a classe dos modelos autorregressivos com valores inteiros não negativos, os processos INAR. Estes modelos têm sido frequentemente tratados em artigos científicos ao longo das últimas décadas, pois a sua importância nas aplicações em diversas áreas do conhecimento tem despertado um grande interesse no seu estudo. Neste trabalho, após uma breve revisão sobre séries temporais e os métodos clássicos para a sua análise, apresentamos os modelos autorregressivos de valores inteiros não negativos de primeira ordem INAR (1) e a sua extensão para uma ordem p, as suas propriedades e alguns métodos de estimação dos parâmetros nomeadamente, o método de Yule-Walker, o método de Mínimos Quadrados Condicionais (MQC), o método de Máxima Verosimilhança Condicional (MVC) e o método de Quase Máxima Verosimilhança (QMV). Apresentamos também um critério automático de seleção de ordem para modelos INAR, baseado no Critério de Informação de Akaike Corrigido, AICC, um dos critérios usados para determinar a ordem em modelos autorregressivos, AR. Finalmente, apresenta-se uma aplicação da metodologia dos modelos INAR em dados reais de contagem relativos aos setores dos transportes marítimos e atividades de seguros de Cabo Verde.