998 resultados para Insect Cells


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have investigated the ability of Sf-caspase-1 and two mammalian caspases, caspase-1 and caspase-3, to induce apoptosis in Spodoptera frugiperda Sf-21 insect cells. While the transient expression of the pro-Sf-caspase-1 did not induce apoptosis, expression of the pro-domain deleted form, p31, or coexpression of the two subunits of mature Sf-caspase-1, p19 and p12, induced apoptosis in Sf-21 cells. The behavior of Sf-caspase-1 resembled that of the closely related mammalian caspase, caspase-3, and contrasted with that of the mammalian caspase-1, the pro-form of which was active in inducing apoptosis in Sf-21 cells. The baculovirus caspase inhibitor P35 blocked apoptosis induced by active forms of all three caspases. In contrast, members of the baculovirus inhibitor of apoptosis (IAP) family failed to block active caspase-induced apoptosis. However, during viral infection, expression of OpIAP or CpIAP blocked the activation of pro-Sf-caspase-1 and the associated induction of apoptosis. Thus, the mechanism by which baculovirus IAPs inhibit apoptosis is distinct from the mechanism by which P35 blocks apoptosis and involves inhibition of the activation of pro-caspases like Sf-caspase-1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ASH1 encodes a protein that is localized specifically to the daughter cell nucleus, where it has been proposed to repress transcription of the HO gene. Using Ash1p purified from baculovirus-infected insect cells, we have shown that Ash1p binds specific DNA sequences in the HO promoter. DNase I protection analyses showed that Ash1p recognizes a consensus sequence, YTGAT. Mutation of this consensus abolishes Ash1p DNA binding in vitro. We have shown that Ash1p requires an intact zinc-binding domain in its C terminus for repression of HO in vivo and that this domain may be involved in DNA binding. A heterologous DNA-binding domain fused to an N-terminal segment of Ash1p functions as an active repressor of transcription. Our studies indicate that Ash1p is a DNA-binding protein of the GATA family with a separable transcriptional repression domain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Regulation of protein phosphatase 1 (PP1) by protein inhibitors and targeting subunits has been previously studied through the use of recombinant protein expressed in Escherichia coli. This preparation is limited by several key differences in its properties compared with native PP1. In the present study, we have analyzed recombinant PP1 expressed in Sf9 insect cells using baculovirus. Sf9 PP1 exhibited properties identical to those of native PP1, with respect to regulation by metals, inhibitor proteins, and targeting subunits, and failure to dephosphorylate a phosphotyrosine-containing substrate or phospho-DARPP-32 (Dopamine and cAMP-regulated phosphoprotein, Mr 32,000). Mutations at Y272 in the β12/β13 loop resulted in a loss of activity and reduced the sensitivity to thiophospho-DARPP-32 and inhibitor-2. Mutations of Y272 also increased the relative activity toward a phosphotyrosine-containing substrate or phospho-DARPP-32. Mutation of acidic groove residues caused no change in sensitivity to thiophospho-DARPP-32 or inhibitor-2, but one mutant (E252A:D253A:E256R) exhibited an increased Km for phosphorylase a. Several PP1/PP2A chimeras were prepared in which C-terminal sequences of PP2A were substituted into PP1. Replacement of residues 274–330 of PP1 with the corresponding region of PP2A resulted in a large loss of sensitivity to thiophospho-DARPP-32 and inhibitor-2, and also resulted in a loss of interaction with the targeting subunits, spinophilin and PP1 nuclear targeting subunit (PNUTS). More limited alterations in residues in β12, β13, and β14 strands highlighted a key role for M290 and C291 in the interaction of PP1 with thiophospho-DARPP-32, but not inhibitor-2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ADAM 3 is a sperm surface glycoprotein that has been implicated in sperm-egg adhesion. Because little is known about the adhesive activity of ADAMs, we investigated the interaction of ADAM 3 disintegrin domains, made in bacteria and in insect cells, with murine eggs. Both recombinant proteins inhibited sperm-egg binding and fusion with potencies similar to that which we recently reported for the ADAM 2 disintegrin domain. Alanine scanning mutagenesis revealed a critical importance for the glutamine at position 7 of the disintegrin loop. Fluorescent beads coated with the ADAM 3 disintegrin domain bound to the egg surface. Bead binding was inhibited by an authentic, but not by a scrambled, peptide analog of the disintegrin loop. Bead binding was also inhibited by the function-blocking anti-α6 monoclonal antibody (mAb) GoH3, but not by a nonfunction blocking anti-α6 mAb, or by mAbs against either the αv or β3 integrin subunits. We also present evidence that in addition to the tetraspanin CD9, two other β1-integrin-associated proteins, the tetraspanin CD81 as well as the single pass transmembrane protein CD98 are expressed on murine eggs. Antibodies to CD9 and CD98 inhibited in vitro fertilization and binding of the ADAM 3 disintegrin domain. Our findings are discussed in terms of the involvement of multiple sperm ADAMs and multiple egg β1 integrin-associated proteins in sperm-egg binding and fusion. We propose that an egg surface “tetraspan web” facilitates fertilization and that it may do so by fostering ADAM–integrin interactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

UV-A/blue light acts to regulate a number of physiological processes in higher plants. These include light-driven chloroplast movement and phototropism. The NPH1 gene of Arabidopsis encodes an autophosphorylating protein kinase that functions as a photoreceptor for phototropism in response to low-intensity blue light. However, nph1 mutants have been reported to exhibit normal phototropic curvature under high-intensity blue light, indicating the presence of an additional phototropic receptor. A likely candidate is the nph1 homologue, npl1, which has recently been shown to mediate the avoidance response of chloroplasts to high-intensity blue light in Arabidopsis. Here we demonstrate that npl1, like nph1, noncovalently binds the chromophore flavin mononucleotide (FMN) within two specialized PAS domains, termed LOV domains. Furthermore, when expressed in insect cells, npl1, like nph1, undergoes light-dependent autophosphorylation, indicating that npl1 also functions as a light receptor kinase. Consistent with this conclusion, we show that a nph1npl1 double mutant exhibits an impaired phototropic response under both low- and high-intensity blue light. Hence, npl1 functions as a second phototropic receptor under high fluence rate conditions and is, in part, functionally redundant to nph1. We also demonstrate that both chloroplast accumulation in response to low-intensity light and chloroplast avoidance movement in response to high-intensity light are lacking in the nph1npl1 double mutant. Our findings therefore indicate that nph1 and npl1 show partially overlapping functions in two different responses, phototropism and chloroplast relocation, in a fluence rate-dependent manner.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In vertebrates, the RAD51 protein is required for genetic recombination, DNA repair, and cellular proliferation. Five paralogs of RAD51, known as RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3, have been identified and also shown to be required for recombination and genome stability. At the present time, however, very little is known about their biochemical properties or precise biological functions. As a first step toward understanding the roles of the RAD51 paralogs in recombination, the human RAD51C and XRCC3 proteins were overexpressed and purified from baculovirus-infected insect cells. The two proteins copurify as a complex, a property that reflects their endogenous association observed in HeLa cells. Purified RAD51C–XRCC3 complex binds single-stranded, but not duplex DNA, to form protein–DNA networks that have been visualized by electron microscopy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The HIV-1 envelope glycoprotein gp120 displays inefficient intracellular transport, which is caused by its retention in the endoplasmic reticulum. Coexpression in insect cells (Sf9) of HIV-1 gp120 with calnexin has shown that their interaction was modulated by the signal sequence of HIV-1 gp120. gp120, with its natural signal sequence, showed a prolonged association with calnexin with a t1/2 of greater than 20 min. Replacement of the natural signal sequence with the signal sequence from mellitin led to a decreased time of association of gp120 with calnexin (t1/2 < 10 min). These different times of calnexin association coincided both with the folding of gp120 as measured by the ability of bind CD4 and with endoplasmic reticulum to Golgi transport as analyzed by the acquisition of partial endoglycosidase H resistance. Using a monospecific antibody to the HIV-1 gp120 natural signal peptide, we showed that calnexin associated with N-glycosylated but uncleaved gp120. Only after dissociation from calnexin was gp120 cleaved, but very inefficiently. Only the small proportion of signal-cleaved gp120 molecules acquired transport competence and were secreted. This is the first report demonstrating the effect of the signal sequence on calnexin association.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The X and Y domains of phospholipase C (PLC)-gamma1, which are conserved in all mammalian phosphoinositide-specific PLC isoforms and are proposed to interact to form the catalytic site, have been expressed as individual hexahistidine-tagged fusion proteins in the baculovirus system. Following coinfection of insect cells with recombinant viruses, association of X and Y polypeptides was demonstrated in coprecipitation assays. When enzyme activity was examined, neither domain possessed catalytic activity when expressed alone; however, coexpression of the X and Y polypeptides produced a functional enzyme. This reconstituted phospholipase activity remained completely dependent on the presence of free Ca2+. The specific activity of the X:Y complex was significantly greater (20- to 100-fold) than that of holoPLC-gamma1 and was only moderately influenced by varying the concentration of substrate. The enzyme activities of holoPLC-gamma1 and the X:Y complex exhibited distinct pH optima. For holoPLC-gamma1 maximal activity was detected at pH 5.0, while activity of the X:Y complex was maximal at pH 7.2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Bcl-2 protein blocks programmed cell death (apoptosis) through an unknown mechanism. Previously we identified a Bcl-2 interacting protein BAG-1 that enhances the anti-apoptotic effects of Bcl-2. Like BAG-1, the serine/threonine protein kinase Raf-1 also can functionally cooperate with Bcl-2 in suppressing apoptosis. Here we show that Raf-1 and BAG-1 specifically interact in vitro and in yeast two-hybrid assays. Raf-1 and BAG-1 can also be coimmunoprecipitated from mammalian cells and from insect cells infected with recombinant baculoviruses encoding these proteins. Furthermore, bacterially-produced BAG-1 protein can increase the kinase activity of Raf-1 in vitro. BAG-1 also activates this mammalian kinase in yeast. These observations suggest that the Bcl-2 binding protein BAG-1 joins Ras and 14-3-3 proteins as potential activators of the kinase Raf-1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dyneins are a class of motor protein involved in ciliary and flagellar motility, organelle transport, and chromosome segregation. Because of their large size and subunit complexity, relatively little is known about their mechanisms of force production and regulation. We report here on the expression and analysis of the entire rat cytoplasmic dynein heavy chain (Mr 532,000). Full-length cDNAs were constructed from a series of partial clones and tagged at the C terminus with either a FLAG-epitope tag or a His6-tag. The recombinant polypeptides were expressed either in insect cells by baculovirus infection or in COS-7 cells by transient transfection. The recombinant protein was mostly soluble and showed good microtubule binding. It exhibited a broad sedimentation profile, indicative of the formation of dimers as well as higher order multimers. Good microtubule gliding motility activity was observed in assays of heavy chain expressed in either insect or COS-7 cells. Average microtubule gliding velocities of 1.2-1.8 microm/sec were observed, comparable with the rates determined for calf brain cytoplasmic dynein. These results represent the first indication that recombinant heavy chain alone is capable of force production, and should lead to rapid progress in defining the dynein motor domain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cu,Zn-superoxide dismutase (SOD) is known to be a locus of mutation in familial amyotrophic lateral sclerosis (FALS). Transgenic mice that express a mutant Cu,Zn-SOD, Gly-93--> Ala (G93A), have been shown to develop amyotrophic lateral sclerosis (ALS) symptoms. We cloned the FALS mutant, G93A, and wild-type cDNA of human Cu,Zn-SOD, overexpressed them in Sf9 insect cells, purified the proteins, and studied their enzymic activities for catalyzing the dismutation of superoxide anions and the generation of free radicals with H2O2 as substrate. Our results showed that both enzymes contain one copper ion per subunit and have identical dismutation activity. However, the free radical-generating function of the G93A mutant, as measured by the spin trapping method, is enhanced relative to that of the wild-type enzyme, particularly at lower H2O2 concentrations. This is due to a small, but reproducible, decrease in the value of Km for H2O2 for the G93A mutant, while the kcat is identical for both enzymes. Thus, the ALS symptoms observed in G93A transgenic mice are not caused by the reduction of Cu,Zn-SOD activity with the mutant enzyme; rather, it is induced by a gain-of-function, an enhancement of the free radical-generating function. This is consistent with the x-ray crystallographic studies showing the active channel of the FALS mutant is slightly larger than that of the wild-type enzyme; thus, it is more accessible to H2O2. This gain-of-function, in part, may provide an explanation for the association between ALS and Cu,Zn-SOD mutants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alternatives to cell culture systems for production of recombinant proteins could make very safe vaccines at a lower cost. We have used genetically engineered plants for expression of candidate vaccine antigens with the goal of using the edible plant organs for economical delivery of oral vaccines. Transgenic tobacco and potato plants were created that express the capsid protein of Norwalk virus, a calicivirus that causes epidemic acute gastroenteritis in humans. The capsid protein could be extracted from tobacco leaves in the form of 38-nm Norwalk virus-like particles. Recombinant Norwalk virus-like particle (rNV) was previously recovered when the same gene was expressed in recombinant baculovirus-infected insect cells. The capsid protein expressed in tobacco leaves and potato tubers cosedimented in sucrose gradients with insect cell-derived rNV and appeared identical to insect cell-derived rNV on immunoblots of SDS/polyacrylamide gels. The plant-expressed rNV was orally immunogenic in mice. Extracts of tobacco leaf expressing rNV were given to CD1 mice by gavage, and the treated mice developed both serum IgG and secretory IgA specific for rNV. Furthermore, when potato tubers expressing rNV were fed directly to mice, they developed serum IgG specific for rNV. These results indicate the potential usefulness of plants for production and delivery of edible vaccines. This is an appropriate technology for developing countries where vaccines are urgently needed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Baculovirus inhibitors of apoptosis (IAPs) act in insect cells to prevent cell death. Here we describe three mammalian homologs of IAP, MIHA, MIHB, and MIHC, and a Drosophila IAP homolog, DIHA. Each protein bears three baculovirus IAP repeats and an N-terminal ring finger motif. Apoptosis mediated by interleukin 1beta converting enzyme (ICE), which can be inhibited by Orgyia pseudotsugata nuclear polyhedrosis virus IAP (OpIAP) and cowpox virus crmA, was also inhibited by MIHA and MIHB. As MIHB and MIHC were able to bind to the tumor necrosis factor receptor-associated factors TRAF1 and TRAF2 in yeast two-hybrid assays, these results suggest that IAP proteins that inhibit apoptosis may do so by regulating signals required for activation of ICE-like proteases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The same heterozygous T -> C transition at nt 8567 of the von Willebrand factor (vWF) transcript was found in two unrelated patients with type III) von Willebrand disease, with no other apparent abnormality. In one family, both alleles were normal in the parents and one sister; thus, the mutation originated de novo in the proposita. The second patient also had asymptomatic parents who, however, were not available for study. The structural consequences of the identified mutation, resulting in the CyS2010 -> Arg substitution, were evaluated by expression of the vWF carboxyl-terminal domain containing residues 1366-2050. Insect cells infected with recombinant baculovirus expressing normal vWF sequence secreted a disulfide linked dimeric molecule with an apparent molecular mass of 150 kDa before reduction, yielding a single band of 80 kDa after disulfide bond reduction. In contrast, cells expressing the mutant fragment secreted a monomeric molecule of apparent molecular mass of 80 kDa, which remained unchanged after reduction. We conclude that CyS2010 is essential for normal dimerization of vWF subunits through disulfide bonding of carboxyl-terminal domains and that a heterozygous mutation in the corresponding codon is responsible for defective multimer formation in type III) von Willebrand disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The double sex gene (dsx) encodes two proteins, DSX(M) and DSX(F), that regulate sex-specific transcription in Drosophila. These proteins bind target sites in DNA from which the male-specific DSX(M) represses and the female-specific DSX(F) activates transcription of yolk protein (Yp) genes. We investigated the physical properties of these DSX proteins, which are identical in their amino-terminal 397 residues but are entirely different in their carboxyl-terminal sequences (DSX(F), 30 amino acids; DSX(M), 152 amino acids). DSX(M) and DSX(F) were overexpressed in cultured insect cells and purified to near homogeneity. Gel filtration chromatography and glycerol gradient sedimentation showed that at low concentrations both proteins are dimers of highly asymmetrical shape. The axial ratios are approximately 18:1 (DSX(M), 860 X 48 angstroms; DSX(F), 735 X 43 angstroms). At higher concentrations, the proteins form tetramers. Through use of a novel, double crosslinking assay (protein-DNA plus protein-protein), we demonstrated that a DNA regulatory site binds to both monomers of the DSX dimer and to only two monomers of the tetramer. Furthermore, binding another DNA molecule to what we presume is the second and identical site in the tetramer dramatically shifts the equilibrium from tetramers to dimers. These oligomerization and DNA binding properties are indistinguishable between the male and female proteins.