889 resultados para Input-Output Table and analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the potential consequences of a hypothetical trade boycott against Catalan products organized by some sectors of the Spanish society mainly for political reasons. A symmetric trade boycott would have two effects: a reduction of Catalan exports to Spain and a partial process of import substitution in Catalonia. In order to quantify the economic impact of the boycott, we compare the "actual" Catalan economy, as described in the input-output table for 2005, with a "simulated" Catalan economy that takes into account the effects of a boycott on the trade exchanges between Catalonia and Spain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report summarizes progress made in Phase 1 of the GIS-based Accident Location and Analysis System (GIS-ALAS) project. The GIS-ALAS project builds on several longstanding efforts by the Iowa Department of Transportation (DOT), law enforcement agencies, Iowa State University, and several other entities to create a locationally-referenced highway accident database for Iowa. Most notable of these efforts is the Iowa DOT’s development of a PC-based accident location and analysis system (PC-ALAS), a system that has been well received by users since it was introduced in 1989. With its pull-down menu structure, PC-ALAS is more portable and user-friendly than its mainframe predecessor. Users can obtain accident statistics for locations during specified time periods. Searches may be refined to identify accidents of specific types or involving drivers with certain characteristics. Output can be viewed on a computer screen, sent to a file, or printed using pre-defined formats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Superheater corrosion causes vast annual losses for the power companies. With a reliable corrosion prediction method, the plants can be designed accordingly, and knowledge of fuel selection and determination of process conditions may be utilized to minimize superheater corrosion. Growing interest to use recycled fuels creates additional demands for the prediction of corrosion potential. Models depending on corrosion theories will fail, if relations between the inputs and the output are poorly known. A prediction model based on fuzzy logic and an artificial neural network is able to improve its performance as the amount of data increases. The corrosion rate of a superheater material can most reliably be detected with a test done in a test combustor or in a commercial boiler. The steel samples can be located in a special, temperature-controlled probe, and exposed to the corrosive environment for a desired time. These tests give information about the average corrosion potential in that environment. Samples may also be cut from superheaters during shutdowns. The analysis ofsamples taken from probes or superheaters after exposure to corrosive environment is a demanding task: if the corrosive contaminants can be reliably analyzed, the corrosion chemistry can be determined, and an estimate of the material lifetime can be given. In cases where the reason for corrosion is not clear, the determination of the corrosion chemistry and the lifetime estimation is more demanding. In order to provide a laboratory tool for the analysis and prediction, a newapproach was chosen. During this study, the following tools were generated: · Amodel for the prediction of superheater fireside corrosion, based on fuzzy logic and an artificial neural network, build upon a corrosion database developed offuel and bed material analyses, and measured corrosion data. The developed model predicts superheater corrosion with high accuracy at the early stages of a project. · An adaptive corrosion analysis tool based on image analysis, constructedas an expert system. This system utilizes implementation of user-defined algorithms, which allows the development of an artificially intelligent system for thetask. According to the results of the analyses, several new rules were developed for the determination of the degree and type of corrosion. By combining these two tools, a user-friendly expert system for the prediction and analyses of superheater fireside corrosion was developed. This tool may also be used for the minimization of corrosion risks by the design of fluidized bed boilers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tämä työ luo katsauksen ajallisiin ja stokastisiin ohjelmien luotettavuus malleihin sekä tutkii muutamia malleja käytännössä. Työn teoriaosuus sisältää ohjelmien luotettavuuden kuvauksessa ja arvioinnissa käytetyt keskeiset määritelmät ja metriikan sekä varsinaiset mallien kuvaukset. Työssä esitellään kaksi ohjelmien luotettavuusryhmää. Ensimmäinen ryhmä ovat riskiin perustuvat mallit. Toinen ryhmä käsittää virheiden ”kylvöön” ja merkitsevyyteen perustuvat mallit. Työn empiirinen osa sisältää kokeiden kuvaukset ja tulokset. Kokeet suoritettiin käyttämällä kolmea ensimmäiseen ryhmään kuuluvaa mallia: Jelinski-Moranda mallia, ensimmäistä geometrista mallia sekä yksinkertaista eksponenttimallia. Kokeiden tarkoituksena oli tutkia, kuinka syötetyn datan distribuutio vaikuttaa mallien toimivuuteen sekä kuinka herkkiä mallit ovat syötetyn datan määrän muutoksille. Jelinski-Moranda malli osoittautui herkimmäksi distribuutiolle konvergaatio-ongelmien vuoksi, ensimmäinen geometrinen malli herkimmäksi datan määrän muutoksille.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multilevel converters provide an attractive solution to bring the benefits of speed-controlled rotational movement to high-power applications. Therefore, multilevel inverters have attracted wide interest in both the academic community and in the industry for the past two decades. In this doctoral thesis, modulation methods suitable especially for series connected H-bridge multilevel inverters are discussed. A concept of duty cycle modulation is presented and its modification is proposed. These methods are compared with other well-known modulation schemes, such as space-vector pulse width modulation and carrier-based modulation schemes. The advantage of the modified duty-cycle modulation is its algorithmic simplicity. A similar mathematical formulation for the original duty cycle modulation is proposed. The modified duty cycle modulation is shown to produce well-formed phase-to-neutral voltages that have lower total harmonic distortion than the space-vector pulse width modulation and the duty cycle modulation. The space-vector-based solution and the duty cycle modulation, on the other hand, result in a better-quality line-to-line voltage and current waveform. The voltage of the DC links in the modules of the series-connected H-bridge inverter are shown to fluctuate while they are under load. The fluctuation causes inaccuracies in the voltage production, which may result in a failure of the flux estimator in the controller. An extension for upper-level modulation schemes, which changes the switching instants of the inverter so that the output voltage meets the reference voltage accurately regardless of the DC link voltages, is proposed. The method is shown to reduce the error to a very low level when a sufficient switching frequency is used. An appropriate way to organize the switching instants of the multilevel inverter is to make only one-level steps at a time. This causes restrictions on the dynamical features of the modulation schemes. The produced voltage vector cannot be rotated several tens of degrees in a single switching period without violating the above-mentioned one-level-step rule. The dynamical capabilities of multilevel inverters are analyzed in this doctoral thesis, and it is shown that the multilevel inverters are capable of operating even in dynamically demanding metal industry applications. In addition to the discussion on modulation schemes, an overvoltage in multilevel converter drives caused by cable reflection is addressed. The voltage reflection phenomenon in drives with long feeder cables causes premature insulation deterioration and also affects the commonmode voltage, which is one of the main reasons for bearing currents. Bearing currents, on the other hand, cause fluting in the bearings, which results in premature bearing failure. The reflection phenomenon is traditionally prevented by filtering, but in this thesis, a modulationbased filterless method to mitigate the overvoltage in multilevel drives is proposed. Moreover, the mitigation method can be implemented as an extension for upper-level modulation schemes. The method exploits the oscillations caused by two consecutive voltage edges so that the sum of the oscillations results in a mitigated peak of the overvoltage. The applicability of the method is verified by simulations together with experiments with a full-scale prototype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation describes a networking approach to infinite-dimensional systems theory, where there is a minimal distinction between inputs and outputs. We introduce and study two closely related classes of systems, namely the state/signal systems and the port-Hamiltonian systems, and describe how they relate to each other. Some basic theory for these two classes of systems and the interconnections of such systems is provided. The main emphasis lies on passive and conservative systems, and the theoretical concepts are illustrated using the example of a lossless transfer line. Much remains to be done in this field and we point to some directions for future studies as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis considers modeling and analysis of noise and interconnects in onchip communication. Besides transistor count and speed, the capabilities of a modern design are often limited by on-chip communication links. These links typically consist of multiple interconnects that run parallel to each other for long distances between functional or memory blocks. Due to the scaling of technology, the interconnects have considerable electrical parasitics that affect their performance, power dissipation and signal integrity. Furthermore, because of electromagnetic coupling, the interconnects in the link need to be considered as an interacting group instead of as isolated signal paths. There is a need for accurate and computationally effective models in the early stages of the chip design process to assess or optimize issues affecting these interconnects. For this purpose, a set of analytical models is developed for on-chip data links in this thesis. First, a model is proposed for modeling crosstalk and intersymbol interference. The model takes into account the effects of inductance, initial states and bit sequences. Intersymbol interference is shown to affect crosstalk voltage and propagation delay depending on bus throughput and the amount of inductance. Next, a model is proposed for the switching current of a coupled bus. The model is combined with an existing model to evaluate power supply noise. The model is then applied to reduce both functional crosstalk and power supply noise caused by a bus as a trade-off with time. The proposed reduction method is shown to be effective in reducing long-range crosstalk noise. The effects of process variation on encoded signaling are then modeled. In encoded signaling, the input signals to a bus are encoded using additional signaling circuitry. The proposed model includes variation in both the signaling circuitry and in the wires to calculate the total delay variation of a bus. The model is applied to study level-encoded dual-rail and 1-of-4 signaling. In addition to regular voltage-mode and encoded voltage-mode signaling, current-mode signaling is a promising technique for global communication. A model for energy dissipation in RLC current-mode signaling is proposed in the thesis. The energy is derived separately for the driver, wire and receiver termination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New mathematical methods to analytically investigate linear acoustic radiation and scattering from cylindrical bodies and transducer arrays are presented. Three problems of interest involving cylinders in an infinite fluid are studied. In all the three problems, the Helmholtz equation is used to model propagation through the fluid and the beam patterns of arrays of transducers are studied. In the first problem, a method is presented to determine the omni-directional and directional far-field pressures radiated by a cylindrical transducer array in an infinite rigid cylindrical baffle. The solution to the Helmholtz equation and the displacement continuity condition at the interface between the array and the surrounding water are used to determine the pressure. The displacement of the surface of each transducer is in the direction of the normal to the array and is assumed to be uniform. Expressions are derived for the pressure radiated by a sector of the array vibrating in-phase, the entire array vibrating in-phase, and a sector of the array phase-shaded to simulate radiation from a rectangular piston. It is shown that the uniform displacement required for generating a source level of 220 dB ref. μPa @ 1m that is omni directional in the azimuthal plane is in the order of 1 micron for typical arrays. Numerical results are presented to show that there is only a small difference between the on-axis pressures radiated by phased cylindrical arrays and planar arrays. The problem is of interest because cylindrical arrays of projectors are often used to search for underwater objects. In the second problem, the errors, when using data-independent, classical, energy and split beam correlation methods, in finding the direction of arrival (DOA) of a plane acoustic wave, caused by the presence of a solid circular elastic cylindrical stiffener near a linear array of hydrophones, are investigated. Scattering from the effectively infinite cylinder is modeled using the exact axisymmetric equations of motion and the total pressures at the hydrophone locations are computed. The effect of the radius of the cylinder, a, the distance between the cylinder and the array, b, the number of hydrophones in the array, 2H, and the angle of incidence of the wave, α, on the error in finding the DOA are illustrated using numerical results. For an array that is about 30 times the wavelength and for small angles of incidence (α<10), the error in finding the DOA using the energy method is less than that using the split beam correlation method with beam steered to α; and in some cases, the error increases when b increases; and the errors in finding the DOA using the energy method and the split beam correlation method with beam steered to α vary approximately as a7 / 4 . The problem is of interest because elastic stiffeners – in nearly acoustically transparent sonar domes that are used to protect arrays of transducers – scatter waves that are incident on it and cause an error in the estimated direction of arrival of the wave. In the third problem, a high-frequency ray-acoustics method is presented and used to determine the interior pressure field when a plane wave is normally incident on a fluid cylinder embedded in another infinite fluid. The pressure field is determined by using geometrical and physical acoustics. The interior pressure is expressed as the sum of the pressures due to all rays that pass through a point. Numerical results are presented for ka = 20 to 100 where k is the acoustic wavenumber of the exterior fluid and a is the radius of the cylinder. The results are in good agreement with those obtained using field theory. The directional responses, to the plane wave, of sectors of a circular array of uniformly distributed hydrophones in the embedded cylinder are then computed. The sectors are used to simulate linear arrays with uniformly distributed normals by using delays. The directional responses are compared with the output from an array in an infinite homogenous fluid. These outputs are of interest as they are used to determine the direction of arrival of the plane wave. Numerical results are presented for a circular array with 32 hydrophones and 12 hydrophones in each sector. The problem is of interest because arrays of hydrophones are housed inside sonar domes and acoustic plane waves from distant sources are scattered by the dome filled with fresh water and cause deterioration in the performance of the array.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pedicle screw insertion technique has made revolution in the surgical treatment of spinal fractures and spinal disorders. Although X- ray fluoroscopy based navigation is popular, there is risk of prolonged exposure to X- ray radiation. Systems that have lower radiation risk are generally quite expensive. The position and orientation of the drill is clinically very important in pedicle screw fixation. In this paper, the position and orientation of the marker on the drill is determined using pattern recognition based methods, using geometric features, obtained from the input video sequence taken from CCD camera. A search is then performed on the video frames after preprocessing, to obtain the exact position and orientation of the drill. An animated graphics, showing the instantaneous position and orientation of the drill is then overlaid on the processed video for real time drill control and navigation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presented herein is an experimental design that allows the effects of several radiative forcing factors on climate to be estimated as precisely as possible from a limited suite of atmosphere-only general circulation model (GCM) integrations. The forcings include the combined effect of observed changes in sea surface temperatures, sea ice extent, stratospheric (volcanic) aerosols, and solar output, plus the individual effects of several anthropogenic forcings. A single linear statistical model is used to estimate the forcing effects, each of which is represented by its global mean radiative forcing. The strong colinearity in time between the various anthropogenic forcings provides a technical problem that is overcome through the design of the experiment. This design uses every combination of anthropogenic forcing rather than having a few highly replicated ensembles, which is more commonly used in climate studies. Not only is this design highly efficient for a given number of integrations, but it also allows the estimation of (nonadditive) interactions between pairs of anthropogenic forcings. The simulated land surface air temperature changes since 1871 have been analyzed. The changes in natural and oceanic forcing, which itself contains some forcing from anthropogenic and natural influences, have the most influence. For the global mean, increasing greenhouse gases and the indirect aerosol effect had the largest anthropogenic effects. It was also found that an interaction between these two anthropogenic effects in the atmosphere-only GCM exists. This interaction is similar in magnitude to the individual effects of changing tropospheric and stratospheric ozone concentrations or to the direct (sulfate) aerosol effect. Various diagnostics are used to evaluate the fit of the statistical model. For the global mean, this shows that the land temperature response is proportional to the global mean radiative forcing, reinforcing the use of radiative forcing as a measure of climate change. The diagnostic tests also show that the linear model was suitable for analyses of land surface air temperature at each GCM grid point. Therefore, the linear model provides precise estimates of the space time signals for all forcing factors under consideration. For simulated 50-hPa temperatures, results show that tropospheric ozone increases have contributed to stratospheric cooling over the twentieth century almost as much as changes in well-mixed greenhouse gases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper brings together two areas of research that have received considerable attention during the last years, namely feedback linearization and neural networks. A proposition that guarantees the Input/Output (I/O) linearization of nonlinear control affine systems with Dynamic Recurrent Neural Networks (DRNNs) is formulated and proved. The proposition and the linearization procedure are illustrated with the simulation of a single link manipulator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dynamic recurrent neural network (DRNN) is used to input/output linearize a control affine system in the globally linearizing control (GLC) structure. The network is trained as a part of a closed loop that involves a PI controller, the goal is to use the network, as a dynamic feedback, to cancel the nonlinear terms of the plant. The stability of the configuration is guarantee if the network and the plant are asymptotically stable and the linearizing input is bounded.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various studies investigating the future impacts of integrating high levels of renewable energy make use of historical meteorological (met) station data to produce estimates of future generation. Hourly means of 10m horizontal wind are extrapolated to a standard turbine hub height using the wind profile power or log law and used to simulate the hypothetical power output of a turbine at that location; repeating this procedure using many viable locations can produce a picture of future electricity generation. However, the estimate of hub height wind speed is dependent on the choice of the wind shear exponent a or the roughness length z0, and requires a number of simplifying assumptions. This paper investigates the sensitivity of this estimation on generation output using a case study of a met station in West Freugh, Scotland. The results show that the choice of wind shear exponent is a particularly sensitive parameter which can lead to significant variation of estimated hub height wind speed and hence estimated future generation potential of a region.