813 resultados para Input technologies
Resumo:
The interest in the development of climbing robots has grown rapidly in the last years. Climbing robots are useful devices that can be adopted in a variety of applications, such as maintenance and inspection in the process and construction industries. These systems are mainly adopted in places where direct access by a human operator is very expensive, because of the need for scaffolding, or very dangerous, due to the presence of an hostile environment. The main motivations are to increase the operation efficiency, by eliminating the costly assembly of scaffolding, or to protect human health and safety in hazardous tasks. Several climbing robots have already been developed, and other are under development, for applications ranging from cleaning to inspection of difficult to reach constructions. A wall climbing robot should not only be light, but also have large payload, so that it may reduce excessive adhesion forces and carry instrumentations during navigation. These machines should be capable of travelling over different types of surfaces, with different inclinations, such as floors, walls, or ceilings, and to walk between such surfaces (Elliot et al. (2006); Sattar et al. (2002)). Furthermore, they should be able of adapting and reconfiguring for various environment conditions and to be self-contained. Up to now, considerable research was devoted to these machines and various types of experimental models were already proposed (according to Chen et al. (2006), over 200 prototypes aimed at such applications had been developed in the world by the year 2006). However, we have to notice that the application of climbing robots is still limited. Apart from a couple successful industrialized products, most are only prototypes and few of them can be found in common use due to unsatisfactory performance in on-site tests (regarding aspects such as their speed, cost and reliability). Chen et al. (2006) present the main design problems affecting the system performance of climbing robots and also suggest solutions to these problems. The major two issues in the design of wall climbing robots are their locomotion and adhesion methods. With respect to the locomotion type, four types are often considered: the crawler, the wheeled, the legged and the propulsion robots. Although the crawler type is able to move relatively faster, it is not adequate to be applied in rough environments. On the other hand, the legged type easily copes with obstacles found in the environment, whereas generally its speed is lower and requires complex control systems. Regarding the adhesion to the surface, the robots should be able to produce a secure gripping force using a light-weight mechanism. The adhesion method is generally classified into four groups: suction force, magnetic, gripping to the surface and thrust force type. Nevertheless, recently new methods for assuring the adhesion, based in biological findings, were proposed. The vacuum type principle is light and easy to control though it presents the problem of supplying compressed air. An alternative, with costs in terms of weight, is the adoption of a vacuum pump. The magnetic type principle implies heavy actuators and is used only for ferromagnetic surfaces. The thrust force type robots make use of the forces developed by thrusters to adhere to the surfaces, but are used in very restricted and specific applications. Bearing these facts in mind, this chapter presents a survey of different applications and technologies adopted for the implementation of climbing robots locomotion and adhesion to surfaces, focusing on the new technologies that are recently being developed to fulfill these objectives. The chapter is organized as follows. Section two presents several applications of climbing robots. Sections three and four present the main locomotion principles, and the main "conventional" technologies for adhering to surfaces, respectively. Section five describes recent biological inspired technologies for robot adhesion to surfaces. Section six introduces several new architectures for climbing robots. Finally, section seven outlines the main conclusions.
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
A genetic algorithm used to design radio-frequency binary-weighted differential switched capacitor arrays (RFDSCAs) is presented in this article. The algorithm provides a set of circuits all having the same maximum performance. This article also describes the design, implementation, and measurements results of a 0.25 lm BiCMOS 3-bit RFDSCA. The experimental results show that the circuit presents the expected performance up to 40 GHz. The similarity between the evolutionary solutions, circuit simulations, and measured results indicates that the genetic synthesis method is a very useful tool for designing optimum performance RFDSCAs.
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
The interest in the development of climbing robots is growing rapidly. Motivations are typically to increase the operation efficiency by obviating the costly assembly of scaffolding or to protect human health and safety in hazardous tasks. Climbing robots are starting to be developed for applications ranging from cleaning to inspection of difficult to reach constructions. These robots should be capable of travelling on different types of surfaces, with varying inclinations, such as floors, walls, ceilings, and to walk between such surfaces. Furthermore, these machines should be capable of adapting and reconfiguring for various environment conditions and to be self-contained. Regarding the adhesion to the surface, they should be able to produce a secure gripping force using a light-weight mechanism. This paper presents a survey of different applications and technologies proposed for the implementation of climbing robots.
Resumo:
In this paper we describe a low cost distributed system intended to increase the positioning accuracy of outdoor navigation systems based on the Global Positioning System (GPS). Since the accuracy of absolute GPS positioning is insufficient for many outdoor navigation tasks, another GPS based methodology – the Differential GPS (DGPS) – was developed in the nineties. The differential or relative positioning approach is based on the calculation and dissemination of the range errors of the received GPS satellites. GPS/DGPS receivers correlate the broadcasted GPS data with the DGPS corrections, granting users increased accuracy. DGPS data can be disseminated using terrestrial radio beacons, satellites and, more recently, the Internet. Our goal is to provide mobile platforms within our campus with DGPS data for precise outdoor navigation. To achieve this objective, we designed and implemented a three-tier client/server distributed system that, first, establishes Internet links with remote DGPS sources and, then, performs campus-wide dissemination of the obtained data. The Internet links are established between data servers connected to remote DGPS sources and the client, which is the data input module of the campus-wide DGPS data provider. The campus DGPS data provider allows the establishment of both Intranet and wireless links within the campus. This distributed system is expected to provide adequate support for accurate outdoor navigation tasks.
Resumo:
Dissertação submetida à Escola Superior de Teatro e Cinema para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Desenvolvimento de projecto cinematográfico - Tecnologias de Pós-Produção
Resumo:
Wireless Body Area Network (WBAN) is the most convenient, cost-effective, accurate, and non-invasive technology for e-health monitoring. The performance of WBAN may be disturbed when coexisting with other wireless networks. Accordingly, this paper provides a comprehensive study and in-depth analysis of coexistence issues and interference mitigation solutions in WBAN technologies. A thorough survey of state-of-the art research in WBAN coexistence issues is conducted. The survey classified, discussed, and compared the studies according to the parameters used to analyze the coexistence problem. Solutions suggested by the studies are then classified according to the followed techniques and concomitant shortcomings are identified. Moreover, the coexistence problem in WBAN technologies is mathematically analyzed and formulas are derived for the probability of successful channel access for different wireless technologies with the coexistence of an interfering network. Finally, extensive simulations are conducted using OPNET with several real-life scenarios to evaluate the impact of coexistence interference on different WBAN technologies. In particular, three main WBAN wireless technologies are considered: IEEE 802.15.6, IEEE 802.15.4, and low-power WiFi. The mathematical analysis and the simulation results are discussed and the impact of interfering network on the different wireless technologies is compared and analyzed. The results show that an interfering network (e.g., standard WiFi) has an impact on the performance of WBAN and may disrupt its operation. In addition, using low-power WiFi for WBANs is investigated and proved to be a feasible option compared to other wireless technologies.
Resumo:
Intelligent electrical grids can be considered as the next generation of electrical energy transportation. The enormous potential leads to worldwide focus of research on the technology of smart grids. This paper aims to present a review of the Brazilian electricity sector in context with the integration of communication technologies for smart grids. The work gives an overview of the generation, transmission and distribution of electrical energy in the Brazil and a brief summary of the current electricity market. Smart grid technologies are introduced and the requirements for the Brazilian power system are pointed out. Various technologies for communication within an intelligent network are presented and their characteristics, advantages and disadvantages are compared to the Brazilian conditions. In addition, a summary is given of current pilot projects for Smart Grid technologies within Brazil, as well as a presentation of individual selected projects.
Resumo:
Dissertation presented to obtain the Ph.D degree in Bioinformatics
Resumo:
This project aimed to create a communication and interaction channel between Madeira Airport and its passengers. We used the pre-existent touch enabled screens at the terminal since their potential was not being utilised to their full capacity. To achieve our goal, we have followed an agile strategy to create a testable prototype and take advantages of its results. The developed prototype is based on a plugin architecture turning it into a maintainable and highly customisable system. The collected usage data suggests that we have achieved the initially defined goals. There is no doubt that this new interaction channel is an improvement regarding the provided services and, supported by the usage data, there is an opportunity to explore additional developments to the channel.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Doutor em Gestão de Informação