722 resultados para Inertia ellipsoid
Resumo:
An engineering analysis of the design of two-wheel bullock carts has been carried out with the aid of a mathematical model. Non-dimensional expressions for the pull and the neck load have been developed. In the first instance, the cart is assumed to be cruising at constant velocity on a terrain with the effective coefficient of rolling friction varying over a wide range (0.001 to 0.5) and the gradient varying between +0.2 to −0.2. Subsequently, the effect of inertia force due to an acceleration parallel to the ground is studied. In the light of this analysis, two modifications to the design of the cart have been proposed and the relative merits of the current designs and the proposed designs are discussed.
Resumo:
The surface tension gradient driven flow that occurs during laser melting has been studied. The vorticity-streamfunction form of the Navier-Stokes equations and the energy equation has been solved by the ‘Alternative Direction Implicit’ method. It has been shown that the inertia forces in the melt strongly influence the flow pattern in the melt. The convection in the melt modifies the isotherms in the melt at high surface tension Reynolds number and high Prandtl number. The buoyancy driven flow has been shown to be negligible compared to the surface tension gradient driven flow in laser melting.
Resumo:
The mean flow development in an initially turbulent boundary layer subjected to a large favourable pressure gradient beginning at a point x0 is examined through analyses expected a priori to be valid on either side of relaminarization. The ‘quasi-laminar’ flow in the later stages of reversion, where the Reynolds stresses have by definition no significant effect on the mean flow, is described by an asymptotic theory constructed for large values of a pressure-gradient parameter Λ, scaled on a characteristic Reynolds stress gradient. The limiting flow consists of an inner laminar boundary layer and a matching inviscid (but rotational) outer layer. There is consequently no entrainment to lowest order in Λ−1, and the boundary layer thins down to conserve outer vorticity. In fact, the predictions of the theory for the common measures of boundary-layer thickness are in excellent agreement with experimental results, almost all the way from x0. On the other hand the development of wall parameters like the skin friction suggests the presence of a short bubble-shaped reverse-transitional region on the wall, where neither turbulent nor quasi-laminar calculations are valid. The random velocity fluctuations inherited from the original turbulence decay with distance, in the inner layer, according to inverse-power laws characteristic of quasi-steady perturbations on a laminar flow. In the outer layer, there is evidence that the dominant physical mechanism is a rapid distortion of the turbulence, with viscous and inertia forces playing a secondary role. All the observations available suggest that final retransition to turbulence quickly follows the onset of instability in the inner layer.It is concluded that reversion in highly accelerated flows is essentially due to domination of pressure forces over the slowly responding Reynolds stresses in an originally turbulent flow, accompanied by the generation of a new laminar boundary layer stabilized by the favourable pressure gradient.
Resumo:
The motion generated by forced oscillations in an incompressible inviscid rotating and/or stratified fluid is examined under linear theory taking the density variation on the inertia terms. The solution consists of numerous internal modes in addition to the mode which oscillates with forcing frequency. Resonance occurs when the forcing frequency is equal to one of the frequencies of the internal modes. Some of these modes grow linearly or exponentially with time rendering the motion unstable and eventually may lead to turbulence. Most of the results discussed here will be missed under Boussinesq approximation.
Resumo:
The purpose of this paper is to develop a sufficiently accurate analysis, which is much simpler than exact three-dimensional analysis, for statics and dynamics of composite laminates. The governing differential equations and boundary conditions are derived by following a variational approach. The displacements are assumed piecewise linear across the thickness and the effects of transverse shear deformations and rotary inertia are included. A procedure for obtaining the general solution of the above governing differential equations in the form of hyperbolic-trigonometric series is given. The accuracy of the present theory is assessed by obtaining results for free vibrations and flexure of simply supported rectangular laminates and comparing them with results from exact three-dimensional analysis.
Resumo:
Vibrational stability of a large flexible, structurally damped spacecraft subject to large rigid body rotations is analysed modelling the system as an elastic continuum. Using solution of rigid body attitude motion under torque free conditions and modal analysis, the vibrational equations are reduced to ordinary differential equations with time-varying coefficients. Stability analysis is carried out using Floquet theory and Sonin-Polya theorem. The cases of spinning and non-spinning spacecraft idealized as a flexible beam plate undergoing simple structural vibration are analysed in detail. The critical damping required for stabilization is shown to be a function of the spacecraft's inertia ratio and the level of disturbance.
Resumo:
Ten Percent Terror brings together leading creatives from the fields of contemporary theatre, contemporary dance, music theatre, circus and digital arts in the first collaboration of its kind. Commissioned by Brisbane Powerhouse, with support from the Anzac Centenary Arts and Culture Fund and in partnership with Dancenorth and Company 2, this is an inter-disciplinary work that combines theatrical narrative with eloquent physicality, through circus and dance, to express certain truths of the soldiers' experience. This production will be a circus-narrative that uses the form and language of circus to express the key themes of risk, panic and brotherhood. Ten Percent Terror is intended to be a work of scale, yet also intimacy: of stillness and panic, inertia and chaos. Project partners, Dancenorth and Company 2, share the vision to use contemporary artistic disciplines to connect younger and modern audiences to the ANZAC legacy, perhaps offering a connection for those audiences that they may not find through more traditional art forms. The development process has included a community research project in Townsville, conducted by Shane Pike, which explored contemporary Australians’ stories through interviews with serving military personnel and the local community, as well as collecting photographic documentation and other artefacts from around Townsville. This was followed by an archival research project in Brisbane, where Pike reviewed letters, photographs and personal accounts of soldiers from WW1. The results of these projects will be used by the creative team to inform the development of Ten Percent Terror. Given Townsville’s reputation as Australia’s ‘garrison’ city, the project partners plan to deliver the world premiere performance of Ten Percent Terror in Townsville in late 2015. It is intended that Ten Percent Terror will receive its Brisbane premiere in November 2015 at Brisbane Powerhouse, as part of a four-performance season. This expert panel included discussion of the project and its place in analysing key aspects of Australia's wartime history.
Resumo:
A generalised theory for the natural vibration of non-uniform thin-walled beams of arbitrary cross-sectional geometry is proposed. The governing equations are obtained as four partial, linear integro-differential equations. The corresponding boundary conditions are also obtained in an integro-differential form. The formulation takes into account the effect of longitudinal inertia and shear flexibility. A method of solution is presented. Some numerical illustrations and an exact solution are included.
Resumo:
The natural frequencies of a reservoir-foundation system are calculated by treating the foundation as a system of linear springs with inertia. The reservoir is treated as consisting of compressible liquid, and the influence of waves at the free surface is included. It is shown that the natural frequencies decrease monotonically as the depth of foundation participating in the motion increases. The influence of waves at the reservoir surface is negligible for the cases normally occurring in practice. It is also shown that the wavelength of motion along the reservoir has no influence on the frequencies when the foundation depth is large compared to the reservoir depth.
Resumo:
Gravity critical speeds of rotors have hitherto been studied using linear analysis, and ascribed to rotor stiffness asymmetry. Here, we study an idealized asymmetric nonlinear overhung rotor model of Crandall and Brosens, spinning close to its gravity critical speed.Nonlinearities arise from finite displacements, and the rotor's staticlateral deflection under gravity is taken as small. Assuming small asymmetry and damping, slow modulations of whirl amplitudes are studied using the method of multiple scales. Inertia asymmetry appears only at second order. More interestingly, even without stiffness asymmetry, the gravity-induced resonance survives through geometric nonlinearities. The gravity resonant forcing does not influence the resonant mode at leading order, unlike the typical resonant oscillations. Nevertheless,the usual phenomena of resonances, namely saddle-node bifurcations, jump phenomena and hysteresis, are all observed. An unanticipated periodic solution branch is found. In the three-dimensional space oftwo modal coefficients and a detuning parameter, the full set of periodic solutions is found to be an imperfect version of three mutually intersecting curves: a straight line,a parabola and an ellipse.
Resumo:
The study deals with the breakup behavior of swirling liquid sheets discharging from gas-centered swirl coaxial atomizers with attention focused toward the understanding of the role of central gas jet on the liquid sheet breakup. Cold flow experiments on the liquid sheet breakup were carried out by employing custom fabricated gas-centered swirl coaxial atomizers using water and air as experimental fluids. Photographic techniques were employed to capture the flow behavior of liquid sheets at different flow conditions. Quantitative variation on the breakup length of the liquid sheet and spray width were obtained from the measurements deduced from the images of liquid sheets. The sheet breakup process is significantly influenced by the central air jet. It is observed that low inertia liquid sheets are more vulnerable to the presence of the central air jet and develop shorter breakup lengths at smaller values of the air jet Reynolds number Re-g. High inertia liquid sheets ignore the presence of the central air jet at smaller values of Re-g and eventually develop shorter breakup lengths at higher values of Re-g. The experimental evidences suggest that the central air jet causes corrugations on the liquid sheet surface, which may be promoting the production of thick liquid ligaments from the sheet surface. The level of surface corrugations on the liquid sheet increases with increasing Re-g. Qualitative analysis of experimental observations reveals that the entrainment process of air established between the inner surface of the liquid sheet and the central air jet is the primary trigger for the sheet breakup.
Resumo:
Spreading and receding processes of water drops impacting on a stainless steel surface comprising rectangular shaped parallel grooves are studied experimentally. The study was confined to the impact of drops in inertia dominated flow regime with Weber number in the range 15 - 257. Measurements of spreading drop diameter and drop height were obtained during the impact process as function of time. Experimental measurements of spreading drop diameter and drop height obtained for the grooved surface were compared with those obtained for a smooth surface to elucidate the influence of surface grooves on the impact process. The grooves definitely influence both spreading and receding processes of impacting liquid drops. A more striking observation from this study is that the receding process of impacting liquid drops is dramatically changed by the groove structure for all droplet Weber number.
Resumo:
This paper presents the effect of nonlocal scaling parameter on the terahertz wave propagation in fluid filled single walled carbon nanotubes (SWCNTs). The SWCNT is modeled as a Timoshenko beam,including rotary inertia and transverse shear deformation by considering the nonlocal scale effects. A uniform fluid velocity of 1000 m/s is assumed. The analysis shows that, for a fluid filled SWCNT, the wavenumbers of flexural and shear waves will increase and the corresponding wave speeds will decrease as compared to an empty SWCNT. The nonlocal scale parameter introduces certain band gap region in both flexural and shear wave mode where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite (or wave speed tends to zero). The frequency at which this phenomenon occurs is called the ``escape frequency''. The effect of fluid density on the terahertz wave propagation in SWCNT is also studied and the analysis shows that as the fluid becomes denser, the wave speeds will decrease. The escape frequency decreases with increase in nonlocal scaling parameter, for both wave modes. We also show that the effect of fluid density and velocity are negligible on the escape frequencies of flexural and shear wave modes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The Eastern Mafia Threat policy, crime phenomena, and cultural meanings An interdisciplinary research on the crime phenomena and the threat policy relating to the organized crime and the mafia of Russia and Estonia is based on 151 expert interviews, statistics, documents, research literature, and press material. The main part of the material consists of interviews of the Finnish, Estonian and Russian police authorities specialized in the problem of organized crime, and the reports on the crime situation drawn up in the Finnish diplomatic representations in Tallinn and St Petersburg. The interviews have been gathered in the years 1996-2001. The main theoretical tools of the research are constructivist research on social problems, and political psychology. Definitional processes of social problems and cultural semantic structures behind them are identified in the analysis and connected to the analysis of the crime cases. Both in the Anglo-American and Russian cultural frames there appears an inflated and exaggerated talk, according to which the mafia rules everything in Russia and is spreading everywhere. There is the traditional anti-Semitic paranoia in the core of this cultural symbiosis produced by Russian legal nihilism, the theory of totalitarianism of Sovietology, and the inertia of Russian anti-capitalism. To equate the Sicilian Mafia with Russia is an anachronism, since no empirical proof of systematic uncontrolled violence or absolute power vacuum in Russia can be found. In the Anglo-American policy of threat images, "the Russian mafia" was seen as a commodified conspiracy theory, which the police, the media, and the research took advantage of, blurring the line between fact and fiction. In Finland, the evolution of the policy of threat images proceeded in three phases: Initially, extensive rolling of refugees and criminals from Russia to Finland was emphasized in the beginning of the 1990's. In the second phase, the eastern mafia was said to infiltrate all over Finnish society and administration. Finland was, however, found immune to this kind of spreading. In the third phase, in the 21st century, the organized crime of Finland was said to be lead from abroad. In Finland, the policy of threat images was especially canalised to moral panics connected to "eastern prostitution". In Estonia, the policy of threat images emphasized the crime organized by the Russian authorities and politicians in order to weaken Estonia. In Russia, the policy of threat images emphasized the total criminalizing of society caused by criminal capitalism. In every country, the policy of threat images was affected by a so-called large-group identity, a term by Vamik Volkan, in which a so-called chosen trauma caused a political paranoia of an outer and inner danger. In Finland, procuring, car theft, and narcotics crimes were at their widest arranged by the Finnish often with the help of the Estonians. The Russians had no influence in the most serious violent crimes in Finland, although the number of assassinations were at least 5, 000 in Russia in the 1990's. In Russia, the assassinations were on one hand connected to marital problems, on the other hand to the pursuit of public attention and a hoped-for effect by the aid of the murder of an influential person. In the white-collar crime phenomena between Finland and Russia, the Finnish state and Finnish corporations gained remarkable benefit of the frauds aimed at the states of the Soviet Union and Russia in 1980's-21st century. The situation of Estonia was very difficult compared to that of Russia in the 1990's, which was manifested in the stagnation of the Estonian police and judicial authorities, the crimes of the police and the voluntary paramilitary organization, bomb explosions, the rebellion called "the jaeger crisis" in the voluntary paramilitary organization, and the "blood autumn" of Eastern Virumaa, in other words terror. The situation of Estonia had a powerful effect on the crime situation of Finland and on the security of the Finnish diplomats. In the continuum of the Finnish policy of threat images, Russia and the Russians were, however, presented as a source of a marked danger.
Resumo:
The inertial impaction of Lycopodium spores on single wires lying transverse to the direction of flow has been studied. The equations of particle motion in a potential flow field have been modified for the case when Stokes' law is inapplicable. Solutions to the above equations have been obtained by digital computation. Rec, the Reynolds number based on cylinder diameter, varied from 4 to 240; particle trajectories in a flow field at Rec = 10 have been determined for inertia parameter K = 1, 2, 4, 6, and 10. Ten trajectories were developed for the above cases by the numerical stepwise method. Experiments were performed by depositing Lycopodium spores on adhesive-coated wires of various diameters and at different velocities. The weight of dust deposited was determined with a microbalance. The experimental conditions were:. Wire diameters: 345, 457, 1500 μ. Particle diameter: 35 μ. Air velocities: 20-250 cm/sec. Inertia parameter: 1-60. The particle was considered as a point mass in the theoretical analysis. But in the experiments the ratio of particle size to wire size was not negligible (rp/rc = 0·1) and hence the effect of finite size of particle on collection efficiency due to the direct interception effect has been estimated. The effect of particle size distribution on collection efficiency has also been estimated. The experimental efficiencies obtained compare well with the calculated efficiencies at Rec = 10 when direct interception is taken into account.