941 resultados para Improves
Resumo:
PURPOSE: EEG and somatosensory evoked potential are highly predictive of poor outcome after cardiac arrest; their accuracy for good recovery is however low. We evaluated whether addition of an automated mismatch negativity-based auditory discrimination paradigm (ADP) to EEG and somatosensory evoked potential improves prediction of awakening. METHODS: EEG and ADP were prospectively recorded in 30 adults during therapeutic hypothermia and in normothermia. We studied the progression of auditory discrimination on single-trial multivariate analyses from therapeutic hypothermia to normothermia, and its correlation to outcome at 3 months, assessed with cerebral performance categories. RESULTS: At 3 months, 18 of 30 patients (60%) survived; 5 had severe neurologic impairment (cerebral performance categories = 3) and 13 had good recovery (cerebral performance categories = 1-2). All 10 subjects showing improvements of auditory discrimination from therapeutic hypothermia to normothermia regained consciousness: ADP was 100% predictive for awakening. The addition of ADP significantly improved mortality prediction (area under the curve, 0.77 for standard model including clinical examination, EEG, somatosensory evoked potential, versus 0.86 after adding ADP, P = 0.02). CONCLUSIONS: This automated ADP significantly improves early coma prognostic accuracy after cardiac arrest and therapeutic hypothermia. The progression of auditory discrimination is strongly predictive of favorable recovery and appears complementary to existing prognosticators of poor outcome. Before routine implementation, validation on larger cohorts is warranted.
Resumo:
Our aim was to evaluate the role of forced diuresis in improving the diagnostic accuracy of abdominopelvic (18)F-FDG PET. METHODS: Thirty-two patients were enrolled. Besides the presence of known intravesical tumors or undefined renal lesions on the initial PET scan, the inclusion criterion was the appearance of indeterminate or equivocal (18)F-FDG foci that extended along the course of the urinary tract and could not confidently be separated from urinary activity. For each patient, a second abdominopelvic PET study was performed after intravenous injection of 0.5 mg of furosemide per kilogram of body weight (maximum, 40 mg) coupled with parenteral infusion of physiologic saline. RESULTS: Forced diuresis coupled with parenteral hydration eliminated any significant (18)F-FDG activity from the lower urinary tract in 31 (97%) of 32 patients after the bladder had been voided 3 successive times. Twelve intravesical lesions were visualized with outstanding clarity, whereas radiologic suspicion of locally recurrent bladder tumors was ruled out in 3 patients. Among 14 indeterminate or equivocal extravesical foci, 7 were deemed of no clinical value because they disappeared after furosemide challenge, whereas 7 persisting foci were proven to be true-positive PET findings. The performance of (18)F-FDG PET in characterizing 3 renal-space-occupying lesions could not be improved by our protocol. CONCLUSION: Furosemide challenge has the potential to noninvasively resolve the inherent (18)F-FDG contrast handicap in the lower urinary tract.
Resumo:
Obesity and insulin resistance represent a problem of utmost clinical significance worldwide. Insulin-resistant states are characterized by the inability of insulin to induce proper signal transduction leading to defective glucose uptake in skeletal muscle tissue and impaired insulin-induced vasodilation. In various pathophysiological models, melatonin interacts with crucial molecules of the insulin signaling pathway, but its effects on glucose homeostasis are not known. In a diet-induced mouse model of insulin resistance and normal chow-fed control mice, we sought to assess the effects of an 8-wk oral treatment with melatonin on insulin and glucose tolerance and to understand underlying mechanisms. In high-fat diet-fed mice, but not in normal chow-fed control mice, melatonin significantly improved insulin sensitivity and glucose tolerance, as evidenced by a higher rate of glucose infusion to maintain euglycemia during hyperinsulinemic clamp studies and an attenuated hyperglycemic response to an ip glucose challenge. Regarding underlying mechanisms, we found that melatonin restored insulin-induced vasodilation to skeletal muscle, a major site of glucose utilization. This was due, at least in part, to the improvement of insulin signal transduction in the vasculature, as evidenced by increased insulin-induced phosphorylation of Akt and endoethelial nitric oxide synthase in aortas harvested from melatonin-treated high-fat diet-fed mice. In contrast, melatonin had no effect on the ability of insulin to promote glucose uptake in skeletal muscle tissue in vitro. These data demonstrate for the first time that in a diet-induced rodent model of insulin resistance, melatonin improves glucose homeostasis by restoring the vascular action of insulin.
Resumo:
AIM: Intensified insulin therapy has evolved to be the standard treatment of type 1 diabetes. However, it has been reported to increase significantly the risk of hypoglycaemia. We studied the effect of structured group teaching courses in flexible insulin therapy (FIT) on psychological and metabolic parameters in patients with type 1 diabetes. METHODS: We prospectively followed 45 type 1 diabetic patients of our outpatient clinic participating in 5 consecutive FIT teaching courses at the University Hospital of Basel. These courses consist of 7 weekly ambulatory evening group sessions. Patients were studied before and 1, 6, and 18 months after the course. Main outcome measures were glycated haemoglobin (HbA1c), severe hypoglycaemic events, quality of life (DQoL), diabetes self-control (IPC-9) and diabetes knowledge (DWT). RESULTS: Quality of life, self-control and diabetes knowledge improved after the FIT courses (all p<0.001). The frequency of severe hypoglycaemic events decreased ten-fold from 0.33 episodes/6 months at baseline to 0.03 episodes/6 months after 18 months (p<0.05). Baseline HbA1c was 7.2+/-1.1% and decreased in the subgroup with HbA1c > or = 8% from 8.4% to 7.8% (p<0.05). CONCLUSIONS: In an unselected, but relatively well-controlled population of type 1 diabetes, a structured, but not very time consuming FIT teaching programme in the outpatient setting improves psychological well-being and metabolic parameters.
Resumo:
Positron emission tomography with [18F] fluorodeoxyglucose (FDG-PET) plays a well-established role in assisting early detection of frontotemporal lobar degeneration (FTLD). Here, we examined the impact of intensity normalization to different reference areas on accuracy of FDG-PET to discriminate between patients with mild FTLD and healthy elderly subjects. FDG-PET was conducted at two centers using different acquisition protocols: 41 FTLD patients and 42 controls were studied at center 1, 11 FTLD patients and 13 controls were studied at center 2. All PET images were intensity normalized to the cerebellum, primary sensorimotor cortex (SMC), cerebral global mean (CGM), and a reference cluster with most preserved FDG uptake in the aforementioned patients group of center 1. Metabolic deficits in the patient group at center 1 appeared 1.5, 3.6, and 4.6 times greater in spatial extent, when tracer uptake was normalized to the reference cluster rather than to the cerebellum, SMC, and CGM, respectively. Logistic regression analyses based on normalized values from FTLD-typical regions showed that at center 1, cerebellar, SMC, CGM, and cluster normalizations differentiated patients from controls with accuracies of 86%, 76%, 75% and 90%, respectively. A similar order of effects was found at center 2. Cluster normalization leads to a significant increase of statistical power in detecting early FTLD-associated metabolic deficits. The established FTLD-specific cluster can be used to improve detection of FTLD on a single case basis at independent centers - a decisive step towards early diagnosis and prediction of FTLD syndromes enabling specific therapies in the future.
Resumo:
Critical illness is characterised by nutritional and metabolic disorders, resulting in increased muscle catabolism, fat-free mass loss, and hyperglycaemia. The objective of the nutritional support is to limit fat-free mass loss, which has negative consequences on clinical outcome and recovery. Early enteral nutrition is recommended by current guidelines as the first choice feeding route in ICU patients. However, enteral nutrition alone is frequently associated with insufficient coverage of the energy requirements, and subsequently energy deficit is correlated to worsened clinical outcome. Controlled trials have demonstrated that, in case of failure or contraindications to full enteral nutrition, parenteral nutrition administration on top of insufficient enteral nutrition within the first four days after admission could improve the clinical outcome, and may attenuate fat-free mass loss. Parenteral nutrition is cautious if all-in-one solutions are used, glycaemia controlled, and overnutrition avoided. Conversely, the systematic use of parenteral nutrition in the ICU patients without clear indication is not recommended during the first 48 hours. Specific methods, such as thigh ultra-sound imaging, 3rd lumbar vertebra-targeted computerised tomography and bioimpedance electrical analysis, may be helpful in the future to monitor fat-free mass during the ICU stay. Clinical studies are warranted to demonstrate whether an optimal nutritional management during the ICU stay promotes muscle mass and function, the recovery after critical illness and reduces the overall costs.
Resumo:
BACKGROUND: The excess in cardiovascular risk in patients with rheumatoid arthritis provides a strong rationale for early therapeutical interventions. In view of the similarities between atherosclerosis and rheumatoid arthritis and the proven benefit of angiotensin-converting enzyme inhibitors in atherosclerotic vascular disease, it was the aim of the present study to delineate the impact of ramipril on endothelial function as well as on markers of inflammation and oxidative stress in patients with rheumatoid arthritis. METHODS AND RESULTS: Eleven patients with rheumatoid arthritis were included in this randomized, double-blind, crossover study to receive ramipril in an uptitration design (2.5 to 10 mg) for 8 weeks followed by placebo, or vice versa, on top of standard antiinflammatory therapy. Endothelial function assessed by flow-mediated dilation of the brachial artery, markers of inflammation and oxidative stress, and disease activity were investigated at baseline and after each treatment period. Endothelial function assessed by flow-mediated dilation increased from 2.85+/-1.49% to 4.00+/-1.81% (P=0.017) after 8 weeks of therapy with ramipril but did not change with placebo (from 2.85+/-1.49% to 2.84+/-2.47%; P=0.88). Although systolic blood pressure and heart rate remained unaltered, diastolic blood pressure decreased slightly from 78+/-7 to 74+/-6 mm Hg (P=0.03). Tumor necrosis factor-alpha showed a significant inverse correlation with flow-mediated dilation (r=-0.408, P=0.02), and CD40 significantly decreased after ramipril therapy (P=0.049). CONCLUSIONS: Angiotensin-converting enzyme inhibition with 10 mg/d ramipril for 8 weeks on top of current antiinflammatory treatment markedly improved endothelial function in patients with rheumatoid arthritis. This finding suggests that angiotensin-converting enzyme inhibition may provide a novel strategy to prevent cardiovascular events in these patients.
Resumo:
Recently, rapid and transient cardiac pacing was shown to induce preconditioning in animal models. Whether the electrical stimulation per se or the concomitant myocardial ischemia affords such a protection remains unknown. We tested the hypothesis that chronic pacing of a cardiac preparation maintained in a normoxic condition can induce protection. Hearts of 4-day-old chick embryos were electrically paced in ovo over a 12-h period using asynchronous and intermittent ventricular stimulation (5 min on-10 min off) at 110% of the intrinsic rate. Sham (n = 6) and paced hearts (n = 6) were then excised, mounted in vitro, and subjected successively to 30 min of normoxia (20% O(2)), 30 min of anoxia (0% O(2)), and 60 min of reoxygenation (20% O(2)). Electrocardiogram and atrial and ventricular contractions were simultaneously recorded throughout the experiment. Reoxygenation-induced chrono-, dromo-, and inotropic disturbances, incidence of arrhythmias, and changes in electromechanical delay (EMD) in atria and ventricle were systematically investigated in sham and paced hearts. Under normoxia, the isolated heart beat spontaneously and regularly, and all baseline functional parameters were similar in sham and paced groups (means +/- SD): heart rate (190 +/- 36 beats/min), P-R interval (104 +/- 25 ms), mechanical atrioventricular propagation (20 +/- 4 mm/s), ventricular shortening velocity (1.7 +/- 1 mm/s), atrial EMD (17 +/- 4 ms), and ventricular EMD (16 +/- 2 ms). Under anoxia, cardiac function progressively collapsed, and sinoatrial activity finally stopped after approximately 9 min in both groups. During reoxygenation, paced hearts showed 1) a lower incidence of arrhythmias than sham hearts, 2) an increased rate of recovery of ventricular contractility compared with sham hearts, and 3) a faster return of ventricular EMD to basal value than sham hearts. However, recovery of heart rate, atrioventricular conduction, and atrial EMD was not improved by pacing. Activity of all hearts was fully restored at the end of reoxygenation. These findings suggest that chronic electrical stimulation of the ventricle at a near-physiological rate selectively alters some cellular functions within the heart and constitutes a nonischemic means to increase myocardial tolerance to a subsequent hypoxia-reoxygenation.
Resumo:
Background Brain-Derived Neurotrophic Factor (BDNF) is the main candidate for neuroprotective therapy for Huntington's disease (HD), but its conditional administration is one of its most challenging problems. Results Here we used transgenic mice that over-express BDNF under the control of the Glial Fibrillary Acidic Protein (GFAP) promoter (pGFAP-BDNF mice) to test whether up-regulation and release of BDNF, dependent on astrogliosis, could be protective in HD. Thus, we cross-mated pGFAP-BDNF mice with R6/2 mice to generate a double-mutant mouse with mutant huntingtin protein and with a conditional over-expression of BDNF, only under pathological conditions. In these R6/2:pGFAP-BDNF animals, the decrease in striatal BDNF levels induced by mutant huntingtin was prevented in comparison to R6/2 animals at 12 weeks of age. The recovery of the neurotrophin levels in R6/2:pGFAP-BDNF mice correlated with an improvement in several motor coordination tasks and with a significant delay in anxiety and clasping alterations. Therefore, we next examined a possible improvement in cortico-striatal connectivity in R62:pGFAP-BDNF mice. Interestingly, we found that the over-expression of BDNF prevented the decrease of cortico-striatal presynaptic (VGLUT1) and postsynaptic (PSD-95) markers in the R6/2:pGFAP-BDNF striatum. Electrophysiological studies also showed that basal synaptic transmission and synaptic fatigue both improved in R6/2:pGAP-BDNF mice. Conclusions These results indicate that the conditional administration of BDNF under the GFAP promoter could become a therapeutic strategy for HD due to its positive effects on synaptic plasticity.
Resumo:
Glibenclamide is neuroprotective against cerebral ischemia in rats. We studied whether glibenclamide enhances long-term brain repair and improves behavioral recovery after stroke. Adult male Wistar rats were subjected to transient middle cerebral artery occlusion (MCAO) for 90 minutes. A low dose of glibenclamide (total 0.6mg) was administered intravenously 6, 12, and 24 hours after reperfusion. We assessed behavioral outcome during a 30-day follow-up and animals were perfused for histological evaluation. In vitro specific binding of glibenclamide to microglia increased after pro-inflammatory stimuli. In vivo glibenclamide was associated with increased migration of doublecortin-positive cells in the striatum toward the ischemic lesion 72 hours after MCAO, and reactive microglia expressed sulfonylurea receptor 1 (SUR1) and Kir6.2 in the medial striatum. One month after MCAO, glibenclamide was also associated with increased number of NeuN-positive and 5-bromo-2-deoxyuridine-positive neurons in the cortex and hippocampus, and enhanced angiogenesis in the hippocampus. Consequently, glibenclamide-treated MCAO rats showed improved performance in the limb-placing test on postoperative days 22 to 29, and in the cylinder and water-maze test on postoperative day 29. Therefore, acute blockade of SUR1 by glibenclamide enhanced long-term brain repair in MCAO rats, which was associated with improved behavioral outcome.
Resumo:
betaTC-tet cells are conditionally immortalized pancreatic beta cells which can confer long-term correction of hyperglycemia when transplanted in syngeneic streptozocin diabetic mice. The use of these cells for control of type I diabetes in humans will require their encapsulation and transplantation in non-native sites where relative hypoxia and cytokines may threaten their survival. In this study we genetically engineered betaTC-tet cells with the anti-apoptotic gene Bcl-2 using new lentiviral vectors and showed that it protected this cell line against apoptosis induced by hypoxia, staurosporine and a mixture of cytokines (IL-1beta, IFN-gamma and TNF-alpha). We further demonstrated that Bcl-2 expression permitted growth at higher cell density and with shorter doubling time. Expression of Bcl-2, however, did not inter- fere either with the intrinsic mechanism of growth arrest present in the betaTC-tet cells or with their normal glucose dose-dependent insulin secretory activity. Furthermore, Bcl-2 expressing betaTC-tet cells retained their capacity to secrete insulin under mild hypoxia. Finally, transplantation of these cells under the kidney capsule of streptozocin diabetic C3H mice corrected hyperglycemia for several months. These results demonstrate that the murine betaTC-tet cell line can be genetically modified to improve its resistance against different stress-induced apoptosis while preserving its normal physiological function. These modified cells represent an improved source for cell transplantation therapy of type I diabetes.
Resumo:
Newer chemotherapeutic protocols as well as high-dose chemotherapy have increased the response rate in myeloma. However, these treatments are not curative. Effective maintenance strategies are now required to prolong the duration of response. We conducted a randomized trial of maintenance treatment with thalidomide and pamidronate. Two months after high-dose therapy, 597 patients younger than age 65 years were randomly assigned to receive no maintenance (arm A), pamidronate (arm B), or pamidronate plus thalidomide (arm C). A complete or very good partial response was achieved by 55% of patients in arm A, 57% in arm B, and 67% in arm C (P = .03). The 3-year postrandomization probability of event-free survival was 36% in arm A, 37% in arm B, and 52% in arm C (P < .009). The 4-year postdiagnosis probability of survival was 77% in arm A, 74% in arm B, and 87% in arm C (P < .04). The proportion of patients who had skeletal events was 24% in arm A, 21% in arm B, and 18% in arm C (P = .4). Thalidomide is an effective maintenance therapy in patients with multiple myeloma. Maintenance treatment with pamidronate does not decrease the incidence of bone events.
Resumo:
Normalization of the increased vascular nitric oxide (NO) generation with low doses of NG-nitro-L-arginine methyl ester (L-NAME) corrects the hemodynamic abnormalities of cirrhotic rats with ascites. We have undertaken this study to investigate the effect of the normalization of vascular NO production, as estimated by aortic cyclic guanosine monophosphate (cGMP) concentration and endothelial nitric oxide synthase (eNOS) protein expression in the aorta and mesenteric artery, on sodium and water excretion. Rats with carbon tetrachloride-induced cirrhosis and ascites were investigated using balance studies. The cirrhotic rats were separated into two groups, one receiving 0.5 mg/kg per day of L-NAME (CIR-NAME) during 7 d, whereas the other group (CIR) was administrated the same volume of vehicle. Two other groups of rats were used as controls, one group treated with L-NAME and another group receiving the same volume of vehicle. Sodium and water excretion was measured on days 0 and 7. On day 8, blood samples were collected for electrolyte and hormone measurements, and aorta and mesenteric arteries were harvested for cGMP determination and nitric oxide synthase (NOS) immunoblotting. Aortic cGMP and eNOS protein expression in the aorta and mesenteric artery were increased in CIR as compared with CIR-NAME. Both cirrhotic groups had a similar decrease in sodium excretion on day 0 (0.7 versus 0.6 mmol per day, NS) and a positive sodium balance (+0.9 versus +1.2 mmol per day, NS). On day 7, CIR-NAME rats had an increase in sodium excretion as compared with the CIR rats (sodium excretion: 2.4 versus 0.7 mmol per day, P < 0.001) and a negative sodium balance (-0.5 versus +0.8 mmol per day, P < 0.001). The excretion of a water load was also increased after L-NAME administration (from 28+/-5% to 65+/-7, P < 0.05). Plasma renin activity, aldosterone and arginine vasopressin were also significantly decreased in the CIR-NAME, as compared with the CIR rats. The results thus indicate that normalization of aortic cGMP and eNOS protein expression in vascular tissue is associated with increased sodium and water excretion in cirrhotic rats with ascites.