857 resultados para Implicit-implicit-implicit intersection
Resumo:
Our objective in this paper is to prove an Implicit Function Theorem for general topological spaces. As a consequence, we show that, under certain conditions, the set of the invertible elements of a topological monoid X is an open topological group in X and we use the classical topological group theory to conclude that this set is a Lie group.
Resumo:
Includes bibliography
Resumo:
This paper presents a method for analyzing electromagnetic transients using real transformation matrices in three-phase systems considering the presence of ground wires. So, for the Z and Y matrices that represent the transmission line, the characteristics of ground wires are not implied in the values related to the phases. A first approach uses a real transformation matrix for the entire frequency range considered in this case. This transformation matrix is an approximation to the exact transformation matrix. For those elements related to the phases of the considered system, the transformation matrix is composed of the elements of Clarke's matrix. In part related to the ground wires, the elements of the transformation matrix must establish a relationship with the elements of the phases considering the establishment of a single homopolar reference in the mode domain. In the case of three-phase lines with the presence of two ground wires, it is unable to get the full diagonalization of the matrices Z and Y in the mode domain. This leads to the second proposal for the composition of real transformation matrix: obtain such transformation matrix from the multiplication of two real and constant matrices. In this case, the inclusion of a second matrix had the objective to minimize errors from the first proposal for the composition of the transformation matrix mentioned. © 2012 IEEE.
Resumo:
Includes bibliography
Resumo:
The aim of this study was to investigate the effects of explicit and implicit knowledge about visual surrounding manipulation on postural responses. Twenty participants divided into two groups, implicit and explicit, remained in upright stance inside a moving room. In the fourth trial participants in the explicit group were informed about the movement of the room while participants in the implicit group performed the trial with the room moving at a larger amplitude and higher velocity. Results showed that postural responses to visual manipulation decreased after participants were told that the room was moving as well as after increasing amplitude and velocity of the room, indicating decreased coupling (down-weighting) of the visual influences. Moreover, this decrease was even greater for the implicit group compared to the explicit group. The results demonstrated that conscious knowledge about environmental state changes the coupling to visual information, suggesting a cognitive component related to sensory re-weighting. Re-weighting processes were also triggered without awareness of subjects and were even more pronounced compared to the first case. Adaptive re-weighting was shown when knowledge about environmental state was gathered explicitly and implicitly, but through different adaptive processes. (C) 2014 Elsevier Ireland Ltd. All rights reserved.
Resumo:
In this note we show that the roots of a polynomial are C∞ depend of the coefficients. The main tool to show this is the Implicit Function Theorem.
Resumo:
We study implicit ODEs, cubic in derivative, with infinitesimal symmetry at singular points. Cartan showed that even at regular points the existence of nontrivial symmetry imposes restrictions on the ODE. Namely, this algebra has the maximal possible dimension 3 iff the web of solutions is flat. For cubic ODEs with flat 3-web of solutions we establish sufficient conditions for the existence of nontrivial symmetries at singular points and show that under natural assumptions such a symmetry is semi-simple, i.e. is a scaling is some coordinates. We use this symmetry to find first integrals of the ODE.
Resumo:
In the paper, the set-valued covering mappings are studied. The statements on solvability, solution estimates, and well-posedness of inclusions with conditionally covering mappings are proved. The results obtained are applied to the investigation of differential inclusions unsolved for the unknown function. The statements on solvability, solution estimates, and well-posedness of these inclusions are derived.
Resumo:
The thesis applies the ICC tecniques to the probabilistic polinomial complexity classes in order to get an implicit characterization of them. The main contribution lays on the implicit characterization of PP (which stands for Probabilistic Polynomial Time) class, showing a syntactical characterisation of PP and a static complexity analyser able to recognise if an imperative program computes in Probabilistic Polynomial Time. The thesis is divided in two parts. The first part focuses on solving the problem by creating a prototype of functional language (a probabilistic variation of lambda calculus with bounded recursion) that is sound and complete respect to Probabilistic Prolynomial Time. The second part, instead, reverses the problem and develops a feasible way to verify if a program, written with a prototype of imperative programming language, is running in Probabilistic polynomial time or not. This thesis would characterise itself as one of the first step for Implicit Computational Complexity over probabilistic classes. There are still open hard problem to investigate and try to solve. There are a lot of theoretical aspects strongly connected with these topics and I expect that in the future there will be wide attention to ICC and probabilistic classes.
Resumo:
The Curry-Howard isomorphism is the idea that proofs in natural deduction can be put in correspondence with lambda terms in such a way that this correspondence is preserved by normalization. The concept can be extended from Intuitionistic Logic to other systems, such as Linear Logic. One of the nice conseguences of this isomorphism is that we can reason about functional programs with formal tools which are typical of proof systems: such analysis can also include quantitative qualities of programs, such as the number of steps it takes to terminate. Another is the possiblity to describe the execution of these programs in terms of abstract machines. In 1990 Griffin proved that the correspondence can be extended to Classical Logic and control operators. That is, Classical Logic adds the possiblity to manipulate continuations. In this thesis we see how the things we described above work in this larger context.
Resumo:
In this thesis we provide a characterization of probabilistic computation in itself, from a recursion-theoretical perspective, without reducing it to deterministic computation. More specifically, we show that probabilistic computable functions, i.e., those functions which are computed by Probabilistic Turing Machines (PTM), can be characterized by a natural generalization of Kleene's partial recursive functions which includes, among initial functions, one that returns identity or successor with probability 1/2. We then prove the equi-expressivity of the obtained algebra and the class of functions computed by PTMs. In the the second part of the thesis we investigate the relations existing between our recursion-theoretical framework and sub-recursive classes, in the spirit of Implicit Computational Complexity. More precisely, endowing predicative recurrence with a random base function is proved to lead to a characterization of polynomial-time computable probabilistic functions.
Resumo:
Synaesthesia is a condition in which the input of one sensory modality triggers extraordinary additional experiences. On an explicit level, subjects affected by this condition normally report unidirectional experiences. In grapheme-colour synaesthesia for example, the letter A printed in black may trigger a red colour experience but not vice versa. However on an implicit level, at least for some types of synaesthesia, bidirectional activation is possible. In this study we tested whether bidirectional implicit activation is mediated by the same brain areas as explicit synaesthetic experiences. Specifically, we demonstrated suppression of implicit bidirectional activation with the application of transcranial magnetic stimulation over parieto-occipital brain areas. Our findings indicate that parieto-occipital regions are not only involved in explicit but also implicit synaesthetic binding.