889 resultados para Impedance Measurement


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a novel wire-mesh sensor based on permittivity (capacitance) measurements is applied to generate images of the phase fraction distribution and investigate the flow of viscous oil and water in a horizontal pipe. Phase fraction values were calculated from the raw data delivered by the wire-mesh sensor using different mixture permittivity models. Furthermore, these data were validated against quick-closing valve measurements. Investigated flow patterns were dispersion of oil in water (Do/w) and dispersion of oil in water and water in oil (Do/w&w/o). The Maxwell-Garnett mixing model is better suited for Dw/o and the logarithmic model for Do/w&w/o flow pattern. Images of the time-averaged cross-sectional oil fraction distribution along with axial slice images were used to visualize and disclose some details of the flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently semi-empirical models to estimate flow boiling heat transfer coefficient, saturated CHF and pressure drop in micro-scale channels have been proposed. Most of the models were developed based on elongated bubbles and annular flows in the view of the fact that these flow patterns are predominant in smaller channels. In these models, the liquid film thickness plays an important role and such a fact emphasizes that the accurate measurement of the liquid film thickness is a key point to validate them. On the other hand, several techniques have been successfully applied to measure liquid film thicknesses during condensation and evaporation under macro-scale conditions. However, although this subject has been targeted by several leading laboratories around the world, it seems that there is no conclusive result describing a successful technique capable of measuring dynamic liquid film thickness during evaporation inside micro-scale round channels. This work presents a comprehensive literature review of the methods used to measure liquid film thickness in macro- and micro-scale systems. The methods are described and the main difficulties related to their use in micro-scale systems are identified. Based on this discussion, the most promising methods to measure dynamic liquid film thickness in micro-scale channels are identified. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A way of coupling digital image correlation (to measure displacement fields) and boundary element method (to compute displacements and tractions along a crack surface) is presented herein. It allows for the identification of Young`s modulus and fracture parameters associated with a cohesive model. This procedure is illustrated to analyze the latter for an ordinary concrete in a three-point bend test on a notched beam. In view of measurement uncertainties, the results are deemed trustworthy thanks to the fact that numerous measurement points are accessible and used as entries to the identification procedure. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, further improvements regarding the fault location problem for power distribution systems are presented. The proposed improvements relate to the capacitive effect consideration on impedance-based fault location methods, by considering an exact line segment model for the distribution line. The proposed developments, which consist of a new formulation for the fault location problem and a new algorithm that considers the line shunt admittance matrix, are presented. The proposed equations are developed for any fault type and result in one single equation for all ground fault types, and another equation for line-to-line faults. Results obtained with the proposed improvements are presented. Also, in order to compare the improvements performance and demonstrate how the line shunt admittance affects the state-of-the-art impedance-based fault location methodologies for distribution systems, the results obtained with two other existing methods are presented. Comparative results show that, in overhead distribution systems with laterals and intermediate loads, the line shunt admittance can significantly affect the state-of-the-art methodologies response, whereas in this case the proposed developments present great improvements by considering this effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the electrical impedance tomography objectives is to estimate the electrical resistivity distribution in a domain based only on electrical potential measurements at its boundary generated by an imposed electrical current distribution into the boundary. One of the methods used in dynamic estimation is the Kalman filter. In biomedical applications, the random walk model is frequently used as evolution model and, under this conditions, poor tracking ability of the extended Kalman filter (EKF) is achieved. An analytically developed evolution model is not feasible at this moment. The paper investigates the identification of the evolution model in parallel to the EKF and updating the evolution model with certain periodicity. The evolution model transition matrix is identified using the history of the estimated resistivity distribution obtained by a sensitivity matrix based algorithm and a Newton-Raphson algorithm. To numerically identify the linear evolution model, the Ibrahim time-domain method is used. The investigation is performed by numerical simulations of a domain with time-varying resistivity and by experimental data collected from the boundary of a human chest during normal breathing. The obtained dynamic resistivity values lie within the expected values for the tissues of a human chest. The EKF results suggest that the tracking ability is significantly improved with this approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The elastic mechanical behavior of elastic materials is modeled by a pair of independent constants (Young`s modulus and Poisson`s coefficient). A precise measurement for both constants is necessary in some applications, such as the quality control of mechanical elements and standard materials used for the calibration of some equipment. Ultrasonic techniques have been used because wave velocity depends on the elastic properties of the propagation medium. The ultrasonic test shows better repeatability and accuracy than the tensile and indentation test. In this work, the theoretical and experimental aspects related to the ultrasonic through-transmission technique for the characterization of elastic solids is presented. Furthermore, an amorphous material and some polycrystalline materials were tested. Results have shown an excellent repeatability and numerical errors that are less than 3% in high-purity samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional modeling of piezoelectric devices requires a precise knowledge of piezoelectric material parameters. The commonly used piezoelectric materials belong to the 6mm symmetry class, which have ten independent constants. In this work, a methodology to obtain precise material constants over a wide frequency band through finite element analysis of a piezoceramic disk is presented. Given an experimental electrical impedance curve and a first estimate for the piezoelectric material properties, the objective is to find the material properties that minimize the difference between the electrical impedance calculated by the finite element method and that obtained experimentally by an electrical impedance analyzer. The methodology consists of four basic steps: experimental measurement, identification of vibration modes and their sensitivity to material constants, a preliminary identification algorithm, and final refinement of the material constants using an optimization algorithm. The application of the methodology is exemplified using a hard lead zirconate titanate piezoceramic. The same methodology is applied to a soft piezoceramic. The errors in the identification of each parameter are statistically estimated in both cases, and are less than 0.6% for elastic constants, and less than 6.3% for dielectric and piezoelectric constants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real-time viscosity measurement remains a necessity for highly automated industry. To resolve this problem, many studies have been carried out using an ultrasonic shear wave reflectance method. This method is based on the determination of the complex reflection coefficient`s magnitude and phase at the solid-liquid interface. Although magnitude is a stable quantity and its measurement is relatively simple and precise, phase measurement is a difficult task because of strong temperature dependence. A simplified method that uses only the magnitude of the reflection coefficient and that is valid under the Newtonian regimen has been proposed by some authors, but the obtained viscosity values do not match conventional viscometry measurements. In this work, a mode conversion measurement cell was used to measure glycerin viscosity as a function of temperature (15 to 25 degrees C) and corn syrup-water mixtures as a function of concentration (70 to 100 wt% of corn syrup). Tests were carried out at 1 MHz. A novel signal processing technique that calculates the reflection coefficient magnitude in a frequency band, instead of a single frequency, was studied. The effects of the bandwidth on magnitude and viscosity were analyzed and the results were compared with the values predicted by the Newtonian liquid model. The frequency band technique improved the magnitude results. The obtained viscosity values came close to those measured by the rotational viscometer with percentage errors up to 14%, whereas errors up to 96% were found for the single frequency method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical impedance tomography (EIT) captures images of internal features of a body. Electrodes are attached to the boundary of the body, low intensity alternating currents are applied, and the resulting electric potentials are measured. Then, based on the measurements, an estimation algorithm obtains the three-dimensional internal admittivity distribution that corresponds to the image. One of the main goals of medical EIT is to achieve high resolution and an accurate result at low computational cost. However, when the finite element method (FEM) is employed and the corresponding mesh is refined to increase resolution and accuracy, the computational cost increases substantially, especially in the estimation of absolute admittivity distributions. Therefore, we consider in this work a fast iterative solver for the forward problem, which was previously reported in the context of structural optimization. We propose several improvements to this solver to increase its performance in the EIT context. The solver is based on the recycling of approximate invariant subspaces, and it is applied to reduce the EIT computation time for a constant and high resolution finite element mesh. In addition, we consider a powerful preconditioner and provide a detailed pseudocode for the improved iterative solver. The numerical results show the effectiveness of our approach: the proposed algorithm is faster than the preconditioned conjugate gradient (CG) algorithm. The results also show that even on a standard PC without parallelization, a high mesh resolution (more than 150,000 degrees of freedom) can be used for image estimation at a relatively low computational cost. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents the implementation of the ultrasonic shear reflectance method for viscosity measurement of Newtonian liquids using wave mode conversion from longitudinal to shear waves and vice versa. The method is based on the measurement of the complex reflection coefficient (magnitude and phase) at a solid-liquid interface. The implemented measurement cell is composed of an ultrasonic transducer, a water buffer, an aluminum prism, a PMMA buffer rod, and a sample chamber. Viscosity measurements were made in the range from 1 to 3.5 MHz for olive oil and for automotive oils (SAE 40, 90, and 250) at 15 and 22.5 degrees C, respectively. Moreover, olive oil and corn oil measurements were conducted in the range from 15 to 30 degrees C at 3.5 and 2.25 MHz, respectively. The ultrasonic measurements, in the case of the less viscous liquids, agree with the results provided by a rotational viscometer, showing Newtonian behavior. In the case of the more viscous liquids, a significant difference was obtained, showing a clear non-Newtonian behavior that cannot be described by the Kelvin-Voigt model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanomaterials have triggered excitement in both fundamental science and technological applications in several fields However, the same characteristic high interface area that is responsible for their unique properties causes unconventional instability, often leading to local collapsing during application Thermodynamically, this can be attributed to an increased contribution of the interface to the free energy, activating phenomena such as sintering and grain growth The lack of reliable interface energy data has restricted the development of conceptual models to allow the control of nanoparticle stability on a thermodynamic basis. Here we introduce a novel and accessible methodology to measure interface energy of nanoparticles exploiting the heat released during sintering to establish a quantitative relation between the solid solid and solid vapor interface energies. We exploited this method in MgO and ZnO nanoparticles and determined that the ratio between the solid solid and solid vapor interface energy is 11 for MgO and 0.7 for ZnO. We then discuss that this ratio is responsible for a thermodynamic metastable state that may prevent collapsing of nanoparticles and, therefore, may be used as a tool to design long-term stable nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to rain events historical monuments exposed to the atmosphere are frequently submitted to wet and dry cycles. During drying periods wetness is maintained in some confined regions and the corrosion product layer, generally denominated patinas, builds up and gets thicker. The aim of this study is to use electrochemical impedance spectroscopy (EIS) to investigate the electrochemical behaviour of pure copper coated with two artificial patina layers and submitted either to continuous or to intermittent immersion tests, this latter aiming to simulate wet and dry cycles. The experiments were performed in 0.1 mol dm(-3) NaCl solution and in artificial rainwater containing the most significant pollutants of the city of Sao Paulo. The results of the continuous immersion tests in the NaCl solution have shown that the coated samples behave like a porous electrode with finite pore length. On the other hand, in the intermittent tests a porous electrode response with semi-infinite pore length can be developed. The results were interpreted based on the model of de Levie and a critical comparison with previous interpretations reported in the literature for similar systems is presented. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes a study of the behavior of a mixture of amines and amides, commercially known as Dodigen 213-N (D-213 N), as a corrosion inhibitor for ASTM 1010 mild steel in 10% w/w HCl solution. The concentration range used was 1 x 10(-5) M to 8 x 10(-4) M. The weight loss and electrochemical techniques used were corrosion potential measurement, anodic and cathodic polarization curves, and electrochemical impedance spectroscopy (EIS). The solution temperature was 50 +/- A 1 A degrees C and it was naturally aerated. The corrosion potential values shifted to slightly more positive values, thus indicating mixed inhibitor behavior. The anodic and cathodic polarization curves showed that D-213 N is an effective corrosion inhibitor, since both the anodic and the cathodic reactions were polarized in comparison with those obtained without inhibitor. For all concentrations the cathodic polarization curves were more polarized than the anodic ones. The inhibition efficiency was in the range 75-98%, calculated from values of weight loss and corrosion current density, i (corr), obtained by extrapolation of Tafel cathodic linear region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: We aimed to evaluate if the co-localisation of calcium and necrosis in intravascular ultrasound virtual histology (IVUS-VH) is due to artefact, and whether this effect can be mathematically estimated. Methods and results: We hypothesised that, in case calcium induces an artefactual coding of necrosis, any addition in calcium content would generate an artificial increment in the necrotic tissue. Stent struts were used to simulate the ""added calcium"". The change in the amount and in the spatial localisation of necrotic tissue was evaluated before and after stenting (n=17 coronary lesions) by means of a especially developed imaging software. The area of ""calcium"" increased from a median of 0.04 mm(2) at baseline to 0.76 mm(2) after stenting (p<0.01). In parallel the median necrotic content increased from 0.19 mm(2) to 0.59 mm(2) (p<0.01). The ""added"" calcium strongly predicted a proportional increase in necrosis-coded tissue in the areas surrounding the calcium-like spots (model R(2)=0.70; p<0.001). Conclusions: Artificial addition of calcium-like elements to the atherosclerotic plaque led to an increase in necrotic tissue in virtual histology that is probably artefactual. The overestimation of necrotic tissue by calcium strictly followed a linear pattern, indicating that it may be amenable to mathematical correction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The water diffusion attributable to concentration gradients is among the main mechanisms of water transport into the asphalt mixture. The transport of small molecules through polymeric materials is a very complex process, and no single model provides a complete explanation because of the small molecule`s complex internal structure. The objective of this study was to experimentally determine the diffusion of water in different fine aggregate mixtures (FAM) using simple gravimetric sorption measurements. For the purposes of measuring the diffusivity of water, FAMs were regarded as a representative homogenous volume of the hot-mix asphalt (HMA). Fick`s second law is generally used to model diffusion driven by concentration gradients in different materials. The concept of the dual mode diffusion was investigated for FAM cylindrical samples. Although FAM samples have three components (asphalt binder, aggregates, and air voids), the dual mode was an attempt to represent the diffusion process by only two stages that occur simultaneously: (1) the water molecules are completely mobile, and (2) the water molecules are partially mobile. The combination of three asphalt binders and two aggregates selected from the Strategic Highway Research Program`s (SHRP) Materials Reference Library (MRL) were evaluated at room temperature [23.9 degrees C (75 degrees F)] and at 37.8 degrees C (100 degrees F). The results show that moisture uptake and diffusivity of water through FAM is dependent on the type of aggregate and asphalt binder. At room temperature, the rank order of diffusivity and moisture uptake for the three binders was the same regardless of the type of aggregate. However, this rank order changed at higher temperatures, suggesting that at elevated temperatures different binders may be undergoing a different level of change in the free volume. DOI: 10.1061/(ASCE)MT.1943-5533.0000190. (C) 2011 American Society of Civil Engineers.