921 resultados para Immune Evasion
Resumo:
The recognition of carbohydrate moieties by cells of the innate immune system is emerging as an essential element in antifungal immunity, but despite the number and diversity of lectins expressed by innate immune cells, few carbohydrate receptors have been characterized. Mincle, a C-type lectin, is expressed predominantly on macrophages, and is here shown to play a role in macrophage responses to the yeast Candida albicans. After exposure to the yeast in vitro, Mincle localized to the phagocytic cup, but it was not essential for phagocytosis. In the absence of Mincle, production of TNF-_ by macrophages was reduced, both in vivo and in vitro. In addition, mice lacking Mincle showed a significantly increased susceptibility to systemic candidiasis. Thus, Mincle plays a novel and nonredundant role in the induction of inflammatory signaling in response to C. albicans infection.
Resumo:
The trafficking of molecules and membranes within cells is a prerequisite for all aspects of cellular immune functions, including the delivery and recycling of cell surface proteins, secretion of immune mediators, ingestion of pathogens and activation of lymphocytes. SNARE (soluble-N-ethylmaleimide-sensitive-factor accessory-protein receptor)-family members mediate membrane fusion during all steps of trafficking, and function in almost all aspects of innate and adaptive immune responses. Here, we provide an overview of the roles of SNAREs in immune cells, offering insight into one level at which precision and tight regulation are instilled on immune responses.
Resumo:
The immune system plays an important role in defending the body against tumours and other threats. Currently, mechanisms involved in immune system interactions with tumour cells are not fully understood. Here we develop a mathematical tool that can be used in aiding to address this shortfall in understanding. This paper de- scribes a hybrid cellular automata model of the interaction between a growing tumour and cells of the innate and specific immune system including the effects of chemokines that builds on previous models of tumour-immune system interactions. In particular, the model is focused on the response of immune cells to tumour cells and how the dynamics of the tumour cells change due to the immune system of the host. We present results and predictions of in silico experiments including simulations of Kaplan-Meier survival-like curves.
Resumo:
Interleukin(IL)-18 is a pleiotrophic cytokine with functions in immune modulation, angiogenesis and bone metabolism. In this study, the potential of IL-18 as an immunotherapy for prostate cancer (PCa) was examined using the murine model of prostate carcinoma, RM1 and a bone metastatic variant RM1(BM)/B4H7-luc. RM1 and RM1(BM)/B4H7-luc cells were stably transfected to express bioactive IL-18. These cells were implanted into syngeneic immunocompetent mice, with or without an IL-18-neutralising antibody (αIL-18, SK113AE4). IL-18 significantly inhibited the growth of both subcutaneous and orthotopic RM1 tumors and the IL-18 neutralizing antibody abrogated the tumor growth-inhibition. In vivo neutralization of interferon-gamma (IFN-γ) completely eliminated the anti-tumor effects of IL-18 confirming an essential role of IFN-γ as a down-stream mediator of the anti-tumor activity of IL-18. Tumors from mice in which IL-18 and/or IFN-γ was neutralized contained significantly fewer CD4+ and CD8+ T cells than those with functional IL-18. The essential role of adaptive immunity was demonstrated as tumors grew more rapidly in RAG1−/− mice or in mice depleted of CD4+ and/or CD8+ cells than in normal mice. The tumors in RAG1−/− mice were also significantly smaller when IL-18 was present, indicating that innate immune mechanisms are involved. IL-18 also induced an increase in tumor infiltration of macrophages and neutrophils but not NK cells. In other experiments, direct injection of recombinant IL-18 into established tumors also inhibited tumor growth, which was associated with an increase in intratumoral macrophages, but not T cells. These results suggest that local IL-18 in the tumor environment can significantly potentiate anti-tumor immunity in the prostate and clearly demonstrate that this effect is mediated by innate and adaptive immune mechanisms.
Resumo:
Premature convergence to local optimal solutions is one of the main difficulties when using evolutionary algorithms in real-world optimization problems. To prevent premature convergence and degeneration phenomenon, this paper proposes a new optimization computation approach, human-simulated immune evolutionary algorithm (HSIEA). Considering that the premature convergence problem is due to the lack of diversity in the population, the HSIEA employs the clonal selection principle of artificial immune system theory to preserve the diversity of solutions for the search process. Mathematical descriptions and procedures of the HSIEA are given, and four new evolutionary operators are formulated which are clone, variation, recombination, and selection. Two benchmark optimization functions are investigated to demonstrate the effectiveness of the proposed HSIEA.
Resumo:
The standard approach to tax compliance applies the economics-of-crime methodology pioneered by Becker (1968): in its first application, due to Allingham and Sandmo (1972) it models the behaviour of agents as a decision involving a choice of the extent of their income to report to tax authorities, given a certain institutional environment, represented by parameters such as the probability of detection and penalties in the event the agent is caught. While this basic framework yields important insights on tax compliance behavior, it has some critical limitations. Specifically, it indicates a level of compliance that is significantly below what is observed in the data. This thesis revisits the original framework with a view towards addressing this issue, and examining the political economy implications of tax evasion for progressivity in the tax structure. The approach followed involves building a macroeconomic, dynamic equilibrium model for the purpose of examining these issues, by using a step-wise model building procedure starting with some very simple variations of the basic Allingham and Sandmo construct, which are eventually integrated to a dynamic general equilibrium overlapping generations framework with heterogeneous agents. One of the variations involves incorporating the Allingham and Sandmo construct into a two-period model of a small open economy of the type originally attributed to Fisher (1930). A further variation of this simple construct involves allowing agents to initially decide whether to evade taxes or not. In the event they decide to evade, the agents then have to decide the extent of income or wealth they wish to under-report. We find that the ‘evade or not’ assumption has strikingly different and more realistic implications for the extent of evasion, and demonstrate that it is a more appropriate modeling strategy in the context of macroeconomic models, which are essentially dynamic in nature, and involve consumption smoothing across time and across various states of nature. Specifically, since deciding to undertake tax evasion impacts on the consumption smoothing ability of the agent by creating two states of nature in which the agent is ‘caught’ or ‘not caught’, there is a possibility that their utility under certainty, when they choose not to evade, is higher than the expected utility obtained when they choose to evade. Furthermore, the simple two-period model incorporating an ‘evade or not’ choice can be used to demonstrate some strikingly different political economy implications relative to its Allingham and Sandmo counterpart. In variations of the two models that allow for voting on the tax parameter, we find that agents typically choose to vote for a high degree of progressivity by choosing the highest available tax rate from the menu of choices available to them. There is, however, a small range of inequality levels for which agents in the ‘evade or not’ model vote for a relatively low value of the tax rate. The final steps in the model building procedure involve grafting the two-period models with a political economy choice into a dynamic overlapping generations setting with more general, non-linear tax schedules and a ‘cost-of evasion’ function that is increasing in the extent of evasion. Results based on numerical simulations of these models show further improvement in the model’s ability to match empirically plausible levels of tax evasion. In addition, the differences between the political economy implications of the ‘evade or not’ version of the model and its Allingham and Sandmo counterpart are now very striking; there is now a large range of values of the inequality parameter for which agents in the ‘evade or not’ model vote for a low degree of progressivity. This is because, in the ‘evade or not’ version of the model, low values of the tax rate encourages a large number of agents to choose the ‘not-evade’ option, so that the redistributive mechanism is more ‘efficient’ relative to the situations in which tax rates are high. Some further implications of the models of this thesis relate to whether variations in the level of inequality, and parameters such as the probability of detection and penalties for tax evasion matter for the political economy results. We find that (i) the political economy outcomes for the tax rate are quite insensitive to changes in inequality, and (ii) the voting outcomes change in non-monotonic ways in response to changes in the probability of detection and penalty rates. Specifically, the model suggests that changes in inequality should not matter, although the political outcome for the tax rate for a given level of inequality is conditional on whether there is a large or small or large extent of evasion in the economy. We conclude that further theoretical research into macroeconomic models of tax evasion is required to identify the structural relationships underpinning the link between inequality and redistribution in the presence of tax evasion. The models of this thesis provide a necessary first step in that direction.
Resumo:
Human immunodeficiency virus type 1 (HIV-1) subtype C is the predominant HIV in southern Africa, and is the target of a number of recent vaccine candidates. It has been proposed that a heterologous prime/boost vaccination strategy may result in stronger, broader and more prolonged immune responses. Since HIV-1 Gag Pr55 polyprotein can assemble into virus-like particles (VLPs) which have been shown to induce a strong cellular immune response in animals, we showed that a typical southern African subtype C Pr55 protein expressed in insect cells via recombinant baculovirus could form VLPs. We then used the baculovirus-produced VLPs as a boost to a subtype C HIV-1 gag DNA prime vaccination in mice. This study shows that a low dose of HIV-1 subtype C Gag VLPs can significantly boost the immune response to a single subtype C gag DNA inoculation in mice. These results suggest a possible vaccination regimen for humans. © 2004 SGM.
Resumo:
Several approaches have been explored to eradicate HIV; however, a multigene vaccine appears to be the best option, given their proven potential to elicit broad, effective responses in animal models. The Pr55 Gagprotein is an excellent vaccine candidate in its own right, given that it can assemble into large, enveloped, virus-like particles (VLPs) which are highly immunogenic, and can moreover be used as a scaffold for the presentation of other large non-structural HIV antigens. In this study, we evaluated the potential of two novel chimaeric HIV-1 Pr55 Gag-based VLP constructs - C-terminal fusions with reverse transcriptase and a Tat::Nef fusion protein, designated GagRT and GagTN respectively - to enhance a cellular response in mice when used as boost components in two types of heterologous prime-boost vaccine strategies. A vaccine regimen consisting of a DNA prime and chimaeric HIV-1 VLP boosts in mice induced strong, broad cellular immune responses at an optimum dose of 100 ng VLPs. The enhanced cellular responses induced by the DNA prime-VLP boost were two- to three-fold greater than two DNA vaccinations. Moreover, a mixture of GagRT and GagTN VLPs also boosted antigen-specific CD8+ and CD4+ T-cell responses, while VLP vaccinations only induced predominantly robust Gag CD4+ T-cell responses. The results demonstrate the promising potential of these chimaeric VLPs as vaccine candidates against HIV-1. © 2010 Pillay et al; licensee BioMed Central Ltd.
Resumo:
Alterations in innate immunity that predispose to chronic obstructive pulmonary disease (COPD) exacerbations are poorly understood. We examined innate immunity gene expression in peripheral blood polymorphonuclear leukocytes (PMN) and monocytes stimulated by Haemophilus influenzae and Streptococcus pneumoniae. Thirty COPD patients (15 rapid and 15 non-rapid lung function decliners) and 15 smokers without COPD were studied. Protein expression of IL-8, IL-6, TNF-α and IFN-γ (especially monocytes) increased with bacterial challenge. In monocytes stimulated with S. pneumoniae, TNF-α protein expression was higher in COPD (non-rapid decliners) than in smokers. In co-cultures of monocytes and PMN, mRNA expression of TGF-β1 and MYD88 was up-regulated, and CD14, TLR2 and IFN-γ down-regulated with H. influenzae challenge. TNF-α mRNA expression was increased with H. influenzae challenge in COPD. Cytokine responses were similar between rapid and non-rapid decliners. TNF-α expression was up-regulated in non-rapid decliners in response to H. influenzae (monocytes) and S. pneumoniae (co-culture of monocytes and PMN). Exposure to bacterial pathogens causes characteristic innate immune responses in peripheral blood monocytes and PMN in COPD. Bacterial exposure significantly alters the expression of TNF-α in COPD patients, although not consistently. There did not appear to be major differences in innate immune responses between rapid and non-rapid decliners.
Resumo:
This study examined the effect of 20 weeks resistance training on a range of serum hormones and inflammatory markers at rest, and following acute bouts of exercise in prostate cancer patients undergoing androgen deprivation. Ten patients exercised twice weekly at high intensity for several upper and lower-body muscle groups. Neither testosterone nor prostate-specific antigen changed at rest or following an acute bout of exercise. However, serum growth hormone (GH), dehydroepiandrosterone (DHEA), interleukin-6, tumor necrosis factor-alpha and differential blood leukocyte counts increased (P < 0.05) following acute exercise. Resistance exercise does not appear to compromise testosterone suppression, and acute elevations in serum GH and DHEA may partly underlie improvements observed in physical function.
Resumo:
The aim of this study was to investigate the influence of low-dose bovine colostrum protein concentrate (CPC) supplementation on selected immune variables in cyclists. Twenty-nine highly trained male road cyclists completed an initial 40-km time trial (TT(40)) and were then randomly assigned to either a supplement (n = 14, 10 g bovine CPC/day) or placebo group (n = 15, 10 g whey protein concentrate/day). After 5 wk of supplementation, the cyclists completed a second TT(40). They then completed 5 consecutive days of high-intensity training (HIT) that included a TT(40), followed by a final TT(40) in the following week. Venous blood and saliva samples were collected immediately before and after each TT(40), and upper respiratory illness symptoms were recorded over the experimental period. Compared with the placebo group, bovine CPC supplementation significantly increased preexercise serum soluble TNF receptor 1 during the HIT period (bovine CPC = 882 +/- 233 pg/ml, placebo = 468 +/- 139 pg/ml; P = 0.039). Supplementation also suppressed the postexercise decrease in cytotoxic/suppressor T cells during the HIT period (bovine CPC = -1.0 +/- 2.7%, placebo = -9.2 +/- 2.8%; P = 0.017) and during the following week (bovine CPC = 1.4 +/- 2.9%, placebo = -8.2 +/- 2.8%; P = 0.004). Bovine CPC supplementation prevented a postexercise decrease in serum IgG(2) concentration at the end of the HIT period (bovine CPC = 4.8 +/- 6.8%, P = 0.88; placebo = -9.7 +/- 6.9%, P = 0.013). There was a trend toward reduced incidence of upper respiratory illness symptoms in the bovine CPC group (P = 0.055). In summary, low-dose bovine CPC supplementation modulates immune parameters during normal training and after an acute period of intense exercise, which may have contributed to the trend toward reduced upper respiratory illness in the bovine CPC group.
Resumo:
Changes in plasma zinc concentration and markers of immune function were examined in a group of 10 male runners (n = 10) following a moderate increase in training over four weeks. Seven sedentary males acted as controls. Fasting blood samples were taken at rest, before (T0) and after (T4) four weeks of increased (+ 16 %) training and after two weeks of reduced (-31 %) training (T6). Blood was analysed for plasma zinc concentration, differential leucocyte counts, lymphocyte subpopulations and lymphocyte proliferation using incorporation of 3H-thymidine. The runners increased their training volume by 16 % over the four weeks. When compared with the nonathletes, the runners had lower concentrations of plasma zinc (p = 0.012), CD3 + (p = 0.042) and CD19 + lymphocytes (p = 0.010) over the four weeks. Lymphocyte proliferation in response to Concanavalin A stimulation was greater in the runners (p = 0.0090). Plasma zinc concentration and immune markers remained constant during the study. Plasma zinc concentration correlated with total leucocyte counts in the athletes at T6 (r = -0.72, p < 0.05) and with Pokeweed mitogen stimulation in the nonathletes at T6 (r = -0.92, p < 0.05). Therefore, athletes are unlikely to benefit from zinc supplementation during periods of moderately increased training volume.
Resumo:
Interaction between the endocrine and immune system is necessary to regulate our health. However, under some conditions, stress hormones can overstimulate or suppress the immune system, resulting in harmful consequences (1). Stress is often considered negative, yet it is an intrinsic part of everyday life. Stress is not clearly defined; it is context-specific and depends on the nature of factors that challenge our body. Internal stimuli will elicit different stress reactions compared with external stimuli (1). Similarly, some stressors will induce responses that may benefit survival, whereas others will cause disturbances that may endanger our health. Stress also depends on how our bodies perceive and respond to stressful stimuli (1).