921 resultados para Immediate-loading
Resumo:
DESIGN: A randomized controlled trial.OB JECTIVE: To investigate the immediate effects on pressure pain thresholds over latent trigger points (TrPs) in the masseter and temporalis muscles and active mouth opening following atlanto-occipital joint thrust manipulation or a soft tissue manual intervention targeted to the suboccipital muscles. BACKGROUND : Previous studies have described hypoalgesic effects of neck manipulative interventions over TrPs in the cervical musculature. There is a lack of studies analyzing these mechanisms over TrPs of muscles innervated by the trigeminal nerve. METHODS: One hundred twenty-two volunteers, 31 men and 91 women, between the ages of 18 and 30 years, with latent TrPs in the masseter muscle, were randomly divided into 3 groups: a manipulative group who received an atlanto-occipital joint thrust, a soft tissue group who received an inhibition technique over the suboccipital muscles, and a control group who did not receive an intervention. Pressure pain thresholds over latent TrPs in the masseter and temporalis muscles, and active mouth opening were assessed pretreatment and 2 minutes posttreatment by a blinded assessor. Mixed-model analyses of variance (ANOVA) were used to examine the effects of interventions on each outcome, with group as the between-subjects variable and time as the within-subjects variable. The primary analysis was the group-by-time interaction. RESULTS: The 2-by-3 mixed-model ANOVA revealed a significant group-by-time interaction for changes in pressure pain thresholds over masseter (P<.01) and temporalis (P =.003) muscle latent TrPs and also for active mouth opening (P<.001) in favor of the manipulative and soft tissue groups. Between-group effect sizes were small. CONCLUSIONS: The application of an atlanto-occipital thrust manipulation or soft tissue technique targeted to the suboccipital muscles led to an immediate increase in pressure pain thresholds over latent TrPs in the masseter and temporalis muscles and an increase in maximum active mouth opening. Nevertheless, the effects of both interventions were small and future studies are required to elucidate the clinical relevance of these changes. LEVEL OF EVIDENCE : Therapy, level 1b. J Orthop Sports Phys Ther 2010;40(5):310-317. doi:10.2519/jospt.2010.3257. KEYWORDSDS: cervical manipulation, muscle trigger points, neck, TMJ, upper cervical.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
A simple procedure to measure the cohesive laws of bonded joints under mode I loading using the double cantilever beam test is proposed. The method only requires recording the applied load–displacement data and measuring the crack opening displacement at its tip in the course of the experimental test. The strain energy release rate is obtained by a procedure involving the Timoshenko beam theory, the specimen’s compliance and the crack equivalent concept. Following the proposed approach the influence of the fracture process zone is taken into account which is fundamental for an accurate estimation of the failure process details. The cohesive law is obtained by differentiation of the strain energy release rate as a function of the crack opening displacement. The model was validated numerically considering three representative cohesive laws. Numerical simulations using finite element analysis including cohesive zone modeling were performed. The good agreement between the inputted and resulting laws for all the cases considered validates the model. An experimental confirmation was also performed by comparing the numerical and experimental load–displacement curves. The numerical load–displacement curves were obtained by adjusting typical cohesive laws to the ones measured experimentally following the proposed approach and using finite element analysis including cohesive zone modeling. Once again, good agreement was obtained in the comparisons thus demonstrating the good performance of the proposed methodology.
Resumo:
In order to correctly assess the biaxial fatigue material properties one must experimentally test different load conditions and stress levels. With the rise of new in-plane biaxial fatigue testing machines, using smaller and more efficient electrical motors, instead of the conventional hydraulic machines, it is necessary to reduce the specimen size and to ensure that the specimen geometry is appropriated for the load capacity installed. At the present time there are no standard specimen’s geometries and the indications on literature how to design an efficient test specimen are insufficient. The main goal of this paper is to present the methodology on how to obtain an optimal cruciform specimen geometry, with thickness reduction in the gauge area, appropriated for fatigue crack initiation, as a function of the base material sheet thickness used to build the specimen. The geometry is optimized for maximum stress using several parameters, ensuring that in the gauge area the stress is uniform and maximum with two limit phase shift loading conditions. Therefore the fatigue damage will always initiate on the center of the specimen, avoiding failure outside this region. Using the Renard Series of preferred numbers for the base material sheet thickness as a reference, the reaming geometry parameters are optimized using a derivative-free methodology, called direct multi search (DMS) method. The final optimal geometry as a function of the base material sheet thickness is proposed, as a guide line for cruciform specimens design, and as a possible contribution for a future standard on in-plane biaxial fatigue tests. © 2014, Gruppo Italiano Frattura. All rights reserved.
Resumo:
The container loading problem (CLP) is a combinatorial optimization problem for the spatial arrangement of cargo inside containers so as to maximize the usage of space. The algorithms for this problem are of limited practical applicability if real-world constraints are not considered, one of the most important of which is deemed to be stability. This paper addresses static stability, as opposed to dynamic stability, looking at the stability of the cargo during container loading. This paper proposes two algorithms. The first is a static stability algorithm based on static mechanical equilibrium conditions that can be used as a stability evaluation function embedded in CLP algorithms (e.g. constructive heuristics, metaheuristics). The second proposed algorithm is a physical packing sequence algorithm that, given a container loading arrangement, generates the actual sequence by which each box is placed inside the container, considering static stability and loading operation efficiency constraints.
Resumo:
In order to correctly assess the biaxial fatigue material properties one must experimentally test different load conditions and stress levels. With the rise of new in-plane biaxial fatigue testing machines, using smaller and more efficient electrical motors, instead of the conventional hydraulic machines, it is necessary to reduce the specimen size and to ensure that the specimen geometry is appropriate for the load capacity installed. At the present time there are no standard specimen's geometries and the indications on literature how to design an efficient test specimen are insufficient. The main goal of this paper is to present the methodology on how to obtain an optimal cruciform specimen geometry, with thickness reduction in the gauge area, appropriate for fatigue crack initiation, as a function of the base material sheet thickness used to build the specimen. The geometry is optimized for maximum stress using several parameters, ensuring that in the gauge area the stress distributions on the loading directions are uniform and maximum with two limit phase shift loading conditions (delta = 0 degrees and (delta = 180 degrees). Therefore the fatigue damage will always initiate on the center of the specimen, avoiding failure outside this region. Using the Renard Series of preferred numbers for the base material sheet thickness as a reference, the reaming geometry parameters are optimized using a derivative-free methodology, called direct multi search (DMS) method. The final optimal geometry as a function of the base material sheet thickness is proposed, as a guide line for cruciform specimens design, and as a possible contribution for a future standard on in-plane biaxial fatigue tests
Resumo:
Background Mobilization with movement (MWM) has been shown to reduce pain, increase range of motion (ROM) and physical function in a range of different musculoskeletal disorders. Despite this evidence, there is a lack of studies evaluating the effects of MWM for hip osteoarthritis (OA). Objectives To determine the immediate effects of MWM on pain, ROM and functional performance in patients with hip OA. Design Randomized controlled trial with immediate follow-up. Method Forty consenting patients (mean age 78 ± 6 years; 54% female) satisfied the eligibility criteria. All participants completed the study. Two forms of MWM techniques (n = 20) or a simulated MWM (sham) (n = 20) were applied. Primary outcomes: pain recorded by numerical rating scale (NRS). Secondary outcomes: hip flexion and internal rotation ROM, and physical performance (timed up and go, sit to stand, and 40 m self placed walk test) were assessed before and after the intervention. Results For the MWM group, pain decreased by 2 points on the NRS, hip flexion increased by 12.2°, internal rotation by 4.4°, and functional tests were also improved with clinically relevant effects following the MWM. There were no significant changes in the sham group for any outcome variable. Conclusions Pain, hip flexion ROM and physical performance immediately improved after the application of MWM in elderly patients suffering hip OA. The observed immediate changes were of clinical relevance. Future studies are required to determine the long-term effects of this intervention.
Resumo:
The Container Loading Problem (CLP) literature has traditionally evaluated the dynamic stability of cargo by applying two metrics to box arrangements: the mean number of boxes supporting the items excluding those placed directly on the floor (M1) and the percentage of boxes with insufficient lateral support (M2). However, these metrics, that aim to be proxies for cargo stability during transportation, fail to translate real-world cargo conditions of dynamic stability. In this paper two new performance indicators are proposed to evaluate the dynamic stability of cargo arrangements: the number of fallen boxes (NFB) and the number of boxes within the Damage Boundary Curve fragility test (NB_DBC). Using 1500 solutions for well-known problem instances found in the literature, these new performance indicators are evaluated using a physics simulation tool (StableCargo), replacing the real-world transportation by a truck with a simulation of the dynamic behaviour of container loading arrangements. Two new dynamic stability metrics that can be integrated within any container loading algorithm are also proposed. The metrics are analytical models of the proposed stability performance indicators, computed by multiple linear regression. Pearson’s r correlation coefficient was used as an evaluation parameter for the performance of the models. The extensive computational results show that the proposed metrics are better proxies for dynamic stability in the CLP than the previous widely used metrics.
Resumo:
BACKGROUND: Musicians are a prone group to suffer from working-related musculoskeletal disorder (WRMD). Conventional solutions to control musculoskeletal pain include pharmacological treatment and rehabilitation programs but their efficiency is sometimes disappointing. OBJECTIVE: The aim of this research is to study the immediate effects of Tuina techniques on WRMD of professional orchestra musicians from the north of Portugal. DESIGN, SETTING, PARTICIPANTS AND INTERVENTIONS: We performed a prospective, controlled, single-blinded, randomized study. Professional orchestra musicians with a diagnosis of WRMD were randomly distributed into the experimental group (n=39) and the control group (n=30). During an individual interview, Chinese diagnosis took place and treatment points were chosen. Real acupoints were treated by Tuina techniques into the experimental group and non-specific skin points were treated into the control group. Pain was measured by verbal numerical scale before and immediately after intervention. RESULTS: After one treatment session, pain was reduced in 91.8% of the cases for the experimental group and 7.9% for the control group. CONCLUSION: Although results showed that Tuina techniques are effectively reducing WRMD in professional orchestra musicians of the north of Portugal, further investigations with stronger measurements, double-blinding designs and bigger simple sizes are needed.
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Civil
Resumo:
The vulnerability of the masonry envelop under blast loading is considered critical due to the risk of loss of lives. The behaviour of masonry infill walls subjected to dynamic out-of-plane loading was experimentally investigated in this work. Using confined underwater blast wave generators (WBWG), applying the extremely high rate conversion of the explosive detonation energy into the kinetic energy of a thick water confinement, allowed a surface area distribution avoiding also the generation of high velocity fragments and reducing atmospheric sound wave. In the present study, water plastic containers, having in its centre a detonator inside a cylindrical explosive charge, were used in unreinforced masonry infills panels with 1.7m by 3.5m. Besides the usage of pressure and displacement transducers, pictures with high-speed video cameras were recorded to enable processing of the deflections and identification of failure modes. Additional numerical studies were performed in both unreinforced and reinforced walls. Bed joint reinforcement and grid reinforcement were used to strengthen the infill walls, and the results are presented and compared, allowing to obtain pressure-impulse diagrams for design of masonry infill walls.
Resumo:
The development of novel strengthening techniques to address the seismic vulnerability of masonry elements is gradually leading to simpler, faster and more effective strengthening strategies. In particular, the use of fabric reinforced cementitious matrix systems is considered of great potential, given the increase of ductility achieved with simple and economic strengthening procedures. To assess the effectiveness of these strengthening systems, and considering that the seismic action is involved, one important component of the structural behaviour is the in-plane cyclic response. In this work is discussed the applicability of the diagonal tensile test for the assessment of the cyclic response of strengthened masonry. The results obtained allowed to assess the contribution of the strengthening system to the increase of the load carrying capacity of masonry elements, as well as to evaluate the damage evolution and the stiffness degradation mechanisms developing under cyclic loading.
Resumo:
This work intends to present a newly developed test setup for dynamic out-of-plane loading using underWater Blast Wave Generators (WBWG) as loading source. Underwater blasting operations have been, during the last decades, subject of research and development of maritime blasting operations (including torpedo studies), aquarium tests for the measurement of blasting energy of industrial explosives and confined underwater blast wave generators. WBWG allow a wide range for the produced blast impulse and surface area distribution. It also avoids the generation of high velocity fragments and reduces atmospheric sound wave. A first objective of this work is to study the behavior of masonry infill walls subjected to blast loading. Three different masonry walls are to be studied, namely unreinforced masonry infill walls and two different reinforcement solutions. These solutions have been studied previously for seismic action mitigation. Subsequently, the walls will be simulated using an explicit finite element code for validation and parametric studies. Finally, a tool to help designers to make informed decisions on the use of infills under blast loading will be presented.
Resumo:
Doctoral Thesis Civil Engineering
Resumo:
Zeolites Y (faujasite) and MOR (mordonite) were used as hosts for temozolomide (TMZ), a current good-standard chemotherapeutic agent used in the treatment of glioblastoma brain tumors. TMZ was loaded into zeolites by liquid-phase adsorption at controlled pH. FTIR, 1H NMR, MS, SEM, UV/vis and chemical analysis demonstrated the successful loading of TMZ into zeolite hosts. The hydrolysis of TMZ in MTIC (TMZ metabolite) after the preparation of drug delivery systems (DDS) was observed in simulated body fluid. The effect of zeolites and DDS were evaluated on the viability of glioblastoma cell lines. Unloaded Y zeolite presented toxicity to cancer cells in contrast to MOR. In accordance, the best results in potentiation of the TMZ effect was obtained with MOR. We found that mordonite loaded with 0.026 mmol of TMZ was able to decrease the half maximal inhibitory concentrations (IC50) at least 3-fold in comparison to free temozolomide both in vitro and in vivo.