920 resultados para ISSR-PCR
Resumo:
稻属(Oryza L)属于禾本科的稻族,主要分布于世界的热带和亚热带地区。一般认为稻属包括20个左右的野生种和2个栽培种,我国有4-5种。迄今为止,对于稻属中种的数目和划分;稻属中所包括的种类是否为一单系类群;各基因组之闻的关系和起源以及稻属的起源等等,学术界仍然存有争议。本文评述了稻属分子系统学研究的进展,研究中存在的问题以及对未来稻属系统学研究的展望。针对稻属的分子系统学研究中所存在的问题,运用核糖体DNA转录间隔区序列测定、随机扩增多态性DNA(RAD)和SSR-anchoredPCR等分子生物学的手段对稻属中全部23个种的来自中国和世界不同地区的材料开展了分子系统学的研究。所得主要结果如下: 1.对产于中国的三种野生稻和栽培稻的二个亚种的核糖体DNA第一转录间隔区进行了序列测定。 DNA序列分别用PAUP程序进行分支分析和用MEGA程序中的UPGMA和Neighbor-joining进行聚类分析,结果表明核糖体DNA转录间隔区序列适合于进行稻属的分子系统学研究。 2.用荧光自动测序法和人工同位素测序法测定了稻属23个种和4个外类群的转录间隔区的序列。所有的DNA序列用Clustal V程序排阵后,再用PAUP程序进行分支分析。结果表明: A.稻属中的23个种组成四个主要分支,分别相当于Vaughan(1989)的四个种复合体。 B.所有AA基因组的种都在一个分支中。除了O.meridionalis与其它种的关系相对较远外,AA基因组种间有一定程度的分化,但不大。 C.尽管BB、BBCC、CC、CCDD和EE基因组的种都在一个分支中,但它们之间的分化是较为明显的。O.australiensis与该分支中的其它种的关系相对较远。以上两个分支的关系较为密切,它们组成一个自然类群,是稻属的核心部分。 D.O.ridleyi与O.longiglumis非常近缘,它们组成一个分支。 E.O.meyeriana与O.granulata有非常密切的关系。O.brachyantha与O.meyeriana近缘,而与AA基因组的关系较远。O,schlechter/与Leersia hexandra近缘,而与稻属中其它种的关系较远。作为外类群的Porteresia coarctata与稻属的a brachyantha非常近缘,这有可能说明将它作稻属中的一员的观点是正确的。 3.用RAPD和ISSR技术对稻属23介种的36份材料以及Porteresia coar ctata和Leersia hexandra各1份材料进行PCR扩增。16个10-mer RAPD随机引物共扩增出368个多态条带,5个锚定SSR引物共扩增出1 16个多态条带。RAPD和ISSR扩增出的多态条带合在同一数据矩阵中,用NTSYS-pc程序进行聚类分析。得出的结果与ITS序列分支分析的结果相似。 A.从表征图上亦可区分出四个群。所有的AA基因组的种聚在一起,O.nivara与O.rufipogon的关系密切,两个种的界限不清楚,所以认为它们是一个种:O.rufipogon.。 B.分布于中国的O.officinalis与O.minuta非常近缘,而菲律宾的四倍体O.officinalis则与同是基因组的O.eichingeri和O.rhizomatis关系密切。EE基因组的O.australiensis与Officinalis群保持一种松散的联系。 C。具FF基因组的O.brachyantha与O.schlechteri近缘,它们与Porteresiacoarctata和Leersia hexandra关系的密切程度要大于它们与稻属其它种的关系。 D。最后讨论了RAPD和ISSR用予植物属内的系统发育研究存在的问题。本研究结果说明RAPD和ISSR适合于进行属内近缘种亲缘关系的研究。
Resumo:
结合野外生态调查与分子标记检测,本文探讨了显性遗传标记应用于居群遗传学研究时实验与数据分析需要注意的问题,并在此基础上对中国分布的疣粒野生稻(Oryza granulata Nees et Am. ex Watt.)居群遗传多样性与居群遗传结构进行了研究。然后从metapopulation结构动态、无性系生长和物种形成等角度研究了遗传结构的空间格局与生态学、系统学因素之间的相互作用,并将研究的空间尺度从聚群内(colony)、居群内、地区内推广到地区间和整个物种水平,反映了在不同空间等级上疣粒野生稻相异的进化模式。最后,综合上述结果,提出了保护疣粒野生稻的原则和策略。结果如下: 1.根据对分布于中国云南和海南33个分布点疣粒野生稻居群所做的野外生态学调查,该物种目前在中国的30个县(市)有分布,比1978-1982年全国野生稻普查时增加了3个县市(海南通什、云南思茅和勐腊)。疣粒野生稻具有较强的耐荫和抗旱能力,在群落总盖度为90-210%范围内生长良好。它是一种典型的适应中度干扰的物种,生长于有一定干扰的斑块状生境中。疣粒野生稻在群落内的分布格局为聚集型,其居群密度较小(1.13-2.95株/m2),依靠重力下落和动物传播种子。由于对热区资源的掠夺性开发,总计有12.9%的居群已因人为干扰而灭绝,83.9%的居群处于严重的危胁之下,处于濒危状态。对疣粒野生稻的破坏在不同地区间程度不同,生境恶化和放牧是造成其居群灭绝的最主要原因,对其进行保护已经迫在眉睫。在调查的基础上,本研究建立了含该物种34个居群共1109份个体样品的总DNA库,作为易位保护的一种措施,主要用于居群遗传学和保护生物学研究。 2.利用上述总DNA库中的材料,首先采用随机扩增多态(RAPD)对几类显性标记的居群遗传结构参数进行了比较。在衡量遗传多样性水平时,多态位点比率(PPB)会低估变异的程度,其价值不如Shannon多样性指数和Nei多样性指数。在计算个体之间的遗传关系时,Mantel检测表明17种相似性系数之间存在极显著的相关性。同时,基于Φst。遗传距离的分子方差分析(AMOVA)和基于Hardy-Weinberg平衡假设的Nei氏遗传距离分析的结果间具有显著的相关性,它们都适用于对疣粒野生稻居群遗传结构进行研究,且在使用后者时应对数据进行Lynch-Milligan矫正,剔除隐性基因型(0)频率小于3/N(N为样本总数)的条带数据,以矫正显性遗传方式对变异估计偏低的影响。此外,各类遗传结构分析参数之间的高度相关性也与疣粒野生稻居群内遗传多样性低,杂合体比率较低有密切关系。 利用RAPD和inter-简单重复序列(ISSR)对来自中国20个居群疣粒野生稻混合样品,以及海南(M5)和云南(M27)两个居群各20个植株的遗传多样性进行了检测。ISSR的实验稳定性优于RAPD,且总的来说它能检测到更多的遗传变异。前者与它在PCR反应时退火温度较高,引物.模板复合物较稳定有关;而后者则与其引物靶序列容易在细胞分裂中产生突变有关。Mantel检测结果表明,衡量样品间的遗传关系时,这两种标记的分析结果在物种水平存在极显著的相关性(r = 0.917, t = 12789),而在居群水平不相关(r < 0.200)。这不但与它们所扩增的相应基因组片断的变异方式及在居群内分辩率下降有关,同时也反映了疣粒野生稻居群内和居群间存在着不同的进化模式。 3.利用RAPD和ISSR标记,对中国20个居群疣粒野生稻混合样品的遗传多样性进行了研究。RAPD和ISSR分别扩增出209和122条PCR条带,其中各有64.1l%(134条带)和72.95%(89条带)为多态条带。基于Jaccard系数的UPGMA分析表明,同一地区内居群的遗传变异比较小。20个居群按来源聚为云南与海南两类,其间产生了一定程度的遗传分化。这种遗传多样性分布的特点可能与其起源、分布格局、交配系统和种子散布方式有关。此外,尽管混合取样会低估一定的遗传变异能力,也不能得到关于居群内的遗传结构情况,但它仍然是一种获取遗传多样性信息的高效方法,适用于对研究材料进行日常管理和评价。 4.按照居群取样的方法,利用RAPD对来自中国云南和海南的20个疣粒野生稻居群共396个植株进行了遗传结构分析。联合ISSR,对其中5个居群初步的分析表明该物种在居群内的遗传多样性水平很低,RAPD的多态位点比率(PPB)在居群内从4.52%到13.06%;而ISSR的PPB值在居群内从7.08%-26.55%。AMOVA分析表明,对于RAPD来说,云南与海南两地区之间遗传变异的量占总变异量的73.85%,地区之内占19.45%,而居群内仅占6.70%。对于ISSR,疣粒野生稻地区间,地区内和居群内遗传变异的分布比率分别为49.26%、38.070A和12.66%。UPGMA聚类将同一居群内的个体聚为一支,并将居群按来源分为云南和海南两类。由于疣粒野生稻在群落内的分布为典型的metapopulation格局,伴随各聚群(colony)在群落次生演替过程中周转(灭绝与定植)时发生的遗传漂变、建立者效应和居群内强烈的近交是造成其居群内遗传多样性极低的主要原因。 5.利用10个ISSR标记对中国4个疣粒野生稻居群内的无性系生长与基因型遗传多样性进行了分析。在小尺度取样(个体间隔1.0-1.5m)的情况下,所有居群中均检测到明显的无性系生长现象。参与无性系生长的个体百分比在各居群中从25%-60%不等,Simpson多样性指数表明疣粒野生稻居群内的基因型多样性保持在较高水平(0.837-0.958)。尽管如此,AMOVA对居群内遗传变异进行方差剖分的结果表明参与无性生长的个体所含有的变异量平均只占总变异量的16.7%。因此,疣粒野生稻居群内遗传变异的来源主要依靠有性生殖来维持。同时,处于人为中度干扰之下的疣粒野生稻居群不但个体密度较高,其居群遗传多样性也未因此而降低。 6.在假设RAPD在同一种及其近缘种内PCR产物同源性较高的前提下,利用该技术对来自世界的23份O. granulata和O. meyeriana样品进行了遗传多样性分析和系统学研究。在物种水平,O. granulata具有非常高的遗传多样性(多态位点比率达83.54%),表明该物种进化历史中存在大规模居群瓶颈效应的可能性较小。O.gramulata与O. meyeriana各居群的遗传分化与岛屿形成导致的地理隔离之间有密切的关系。基于Nei & Li遗传相似性系数,利用Neighbor-Joining和UPGMA聚类法构建的两个系统树并不完全一致。主坐标分析(PCoA)支持NJ法的结果:来自O.meyeriana的两个样品倾向于聚为一类,并获得bootstrap分析的支持,但它们的遗传变异范围并未超出O. granulata。因此,我们的结果支持将这两个种进行归并。 7.由于疣粒野生稻在物种水平的遗传多样性非常高,变异主要存在于各地区之间,因此要最大程度地维持该物种遗传多样性,使之不发生遗传侵蚀意味着保护应该针对整个物种的分布区进行。对于分布于中国的居群来说,一方面由于变异主要存在于云南和海南两地区之间,另一方面由于地区内和居群内的遗传多样性相对较低,因此,云南和海南应做为中国保护该物种的两个中心。此外,由于一定程度的人为干扰有利于为该物种创造适宜生境,增加其居群密度,且不会致使遗传变异能力下降,因此在实施就地保护时应充分考虑将其与当地的经济开发项目相结合,达到自然保护与地方经济可持续发展的目的。
Resumo:
聚合酶链式反应(Polymerase Chain Reaction,PCR)技术从其发明以来,因为其操作的简单方便和高效率而在生物学研究的各个领域得到了广泛的应用,包括序列扩增、序列的人工突变、疾病诊断、法医学鉴定、基因的表达分析等等。从PCR技术发明以来,如何提高反应的特异性和反应的效率一直是人们所共同关心的题目,为此也发展了相当数量的各种方法,如热启动PCR、降落PCR、巢式PCR以及在反应体系中添加一些有益的附属物等。而适合不同目的的PCR技术也得到了充分的发展,如多重PCR、反转录PCR、定量PCR、原位PCR、PCR突变、毛细管PCR技术等等。并且,包括随机引物扩增多态、扩增片段长度多态性、简单重复序列多态性、单核苷酸多态性等这些在PCR技术基础上发展而来的各种分子标记技术极大地方便了遗传分析和遗传图谱的构建等工作。在PCR技术发明了20年后的今天,提高PCR的反应性能、发展适合新领域的PCR技术和新的分子标记技术仍然是研究者关心的题目和努力的方向。 PCR实验中已经观察到多种异常现象,除了常见的扩增失败(没有产物)、扩增产物特异性不强(有非特异产物出现)、引物多聚体产物扩增、扩增效率低等现象以外,还包括PCR介导的重组、跳跃、复制滑动等等。阐明这些异常现象的发生机理和过程,避免或缓解这些异常现象在扩增过程中对目的产物扩增的影响,以及促进和利用一些特殊的异常PCR扩增都是PCR技术研究所关心的话题。各种研究工作中经常需要扩增一些长片段的序列,但是在进行长片段PCR时经常会发现扩增目标序列的长度是有限的、扩增效率比较低、扩增产物检测中有很强的背景弥散等现象;同时长片段PCR需要一些特殊的反应体系组成和反应条件。如何更加有效地实现更长序列的PCR扩增也是人们所关心的话题之一。 常见的PCR产物重复扩增(以上一轮扩增产物为模板进行新的PCR扩增)扩增轮数少,通常仅进行一次重复扩增;同时,在重复扩增中常使用的策略是使用巢式引物。而连续PCR扩增实验(用相同的引物以产物为模板进行多轮次的连续重复PCR扩增)从未见于文献报道。我们第一次系统地进行了连续PCR扩增实验;同时,在实验过程中我们观察到了一种新的PCR扩增异常现象——用不同来源的模板(病毒、细菌质粒或真核生物来源的DNA序列)进行连续PCR扩增不同长度的靶序列,经过有限次数的重复扩增后,最终都会导致扩增失败;这种扩增失败都表现为在常规琼脂糖电泳检测时特异产物条带的消失和不能泳动出点样孔之复杂异常产物的出现;这种扩增产生的异常产物能够被稳定地重复扩增。用λ和细菌质粒序列为模板连续扩增不同长度靶序列的结果表明:连续PCR扩增失败的时期具有扩增靶序列长度的依赖性,越长的靶序列在连续PCR中扩增失败的时期越早。 对不同连续PCR扩增的扩增过程观察表明扩增产物经历了一个从高效特异性扩增到低效率特异性扩增,再到扩增产生复杂异常产物的过程。对复杂异常产物的甲酰胺辅助变性处理和变性胶电泳(尿素变性聚丙烯酰胺胶电泳和NaOH碱变性琼脂糖电泳)检测表明扩增产生的复杂产物主要由连续分布的小于靶序列长度的具有相当程度多样性的非全长链组成。连续PCR产生的复杂产物在内部具有局部的双链区域和大量的单链区域及外部单链分支,能够被单链特异的S1核酸酶消化,但是不能被双链特异的限制性内切酶消化。用DNase I或限制性内切酶处理连续扩增早期产生特异扩增产物形成不同长度序列组成的混合物,或者直接用不同扩增反应产生的不同长度的核酸序列组成混合物,混合物在经历变性-复性后都表现出类似连续PCR失败所产生的异常产物电泳行为。这些证据都表明PCR扩增过程中形成的非全长链成分是导致这种异常现象的关键因素,多个不同长度的非全长链复性形成“杂种分子”(具有较大且不一致的分子量和复杂的分支结构),最终表现为常规琼脂糖电泳异常的复杂产物。同时,异常产物组成非全长链成分和全长链成分是其能够实现稳定重复扩增的基础。 实验结果表明:对于特定长度的靶序列而言,导致复杂异常出现的根本原因是连续PCR扩增体系中所经历的总PCR热循环数目(每一轮PCR扩增所使用的循环数目多,成功连续扩增的轮数就少);而扩增体系中的引物浓度、DNA聚合酶用量的多少、扩增程序中时间参数等对此影响较小;巢式PCR和单引物-互补引物PCR的结果表明这些处理对于缓解或延迟异常产物的出现有一定的作用。人工处理(DNase I或限制性内切酶处理)完整模板双链形成的非全长链长产物,然后把非全长链长产物以不同比例同完整模板混合模拟连续扩增后期产物,这种人工混合模板表明连续PCR扩增中同源的非全长链成分对PCR扩增有严重的干扰作用,是导致复杂异常产物出现的直接原因。 已有的研究表明:PCR介导重组、长片段PCR难于操作有共同的产生基础——扩增过程中非全长链成分的产生和非全长链成分对后续扩增过程的干扰作用。这一点和导致连续PCR失败的原因是一致的。非全长链成分的出现是PCR扩增过程中不可避免的,其最初产生的可能来源有三个:模板的损伤(扩增前的模板损伤或扩增热循环过程中的损伤)、聚合酶的忠实性、以及聚合酶的进行性。根据聚合酶的特性而调整扩增程序中延伸时间的实验表明,聚合酶的进行性不是导致连续PCR扩增失败的最主要原因。这种非全长链成分产物从无到有且不依赖于体系中非全长链成分的过程我们称之为非全长链成分的初级合成;而已经存在的非全长链成分干扰后续合成形成非全长链成分的过程我们称之为非全长链成分的次级合成。非全长链成分的初级合成和次级合成共同导致了连续扩增的失败和异常产物的形成。 从已有的研究结果看,任何降低PCR扩增过程中非全长链成分产生的措施,特别是聚合酶忠实性的提高,都能缓解异常扩增产物的出现和利于长片段PCR操作。
Resumo:
Several microorganisms have been identified as pathogenic agents responsible for various outbreaks of coral disease. Little has been learned about the exclusivity of a pathogen to given disease signs. Most pathogens have only been implicated within a subset of corals, leaving gaps in our knowledge of the host range and geographic extent of a given pathogen. PCR-based assays provide a rapid and inexpensive route for detection of pathogens. Pathogen-specific 16S rDNA primer sets were designed to target four identified coral pathogens: Aurantimonas coralicida, Serratia marcescens, Vibrio shilonii, and Vibrio coralliilyticus. Assays detected the presence of targets at concentrations of less than one cell per microliter. The assay was applied to 142 coral samples from the Florida Keys, Puerto Rico, and U.S. Virgin Islands as an in situ specificity test. Assays displayed a high-level of specificity, seemingly limited only by the resolution of the 16S rDNA.
Resumo:
To expand the feasibility of applying simple, efficient, non-invasive DNA preparation methods using samples that can be obtained from giant pandas living in the wild, we investigated the use of scent markings and fecal samples. Giant panda-specific oligonucleotide primers were used to amplify a portion of the mitochondrial DNA control region as well as a portion of the mitochondrial DNA cytochrome b gene and tRNA(Thr) gene region. A 196 base pair (bp) fragment in the control region and a 449 bp fragment in the cytochrome b gene and tRNA(Thr) gene were successfully amplified. Sequencing of polymerase chain reaction (PCR) products demonstrated that the two fragments are giant panda sequences. Furthermore, under simulated field conditions we found that DNA can be extracted from fecal samples aged as long as 3 months. Our results suggest that the scent mark and fecal samples are simple, efficient, and easily prepared DNA sources. (C) 1998 Wiley-Liss, Inc.
Resumo:
Thirteen restriction endonucleases were used to investigate nucleotide sequence variation in the 18S rRNA DNA of 88 individuals from ten Sarcocystis taxa collected as cysts from their intermediate hosts, swine, cattle and water buffalo. A DNA sequence of