972 resultados para IONIZATION-POTENTIALS
Resumo:
A numerical study of Brownian motion of noninteracting particles in random potentials is presented. The dynamics are modeled by Langevin equations in the high friction limit. The random potentials are Gaussian distributed and short ranged. The simulations are performed in one and two dimensions. Different dynamical regimes are found and explained. Effective subdiffusive exponents are obtained and commented on.
Resumo:
The relativistic distorted-wave Born approximation is used to calculate differential and total cross sections for inner shell ionization of neutral atoms by electron and positron impact. The target atom is described within the independent-electron approximation using the self-consistent Dirac-Fock-Slater potential. The distorting potential for the projectile is also set equal to the Dirac-Fock-Slater potential. For electrons, this guarantees orthogonality of all the orbitals involved and simplifies the calculation of exchange T-matrix elements. The interaction between the projectile and the target electrons is assumed to reduce to the instantaneous Coulomb interaction. The adopted numerical algorithm allows the calculation of differential and total cross sections for projectiles with kinetic energies ranging from the ionization threshold up to about ten times this value. Algorithm accuracy and stability are demonstrated by comparing differential cross sections calculated by our code with the distorting potential set to zero with equivalent results generated by a more robust code that uses the conventional plane-wave Born approximation. Sample calculation results are presented for ionization of K- and L-shells of various elements and compared with the available experimental data.
Resumo:
There has been a recent revolution in the ability to manipulate micrometer-sized objects on surfaces patterned by traps or obstacles of controllable configurations and shapes. One application of this technology is to separate particles driven across such a surface by an external force according to some particle characteristic such as size or index of refraction. The surface features cause the trajectories of particles driven across the surface to deviate from the direction of the force by an amount that depends on the particular characteristic, thus leading to sorting. While models of this behavior have provided a good understanding of these observations, the solutions have so far been primarily numerical. In this paper we provide analytic predictions for the dependence of the angle between the direction of motion and the external force on a number of model parameters for periodic as well as random surfaces. We test these predictions against exact numerical simulations.
Resumo:
The effective diffusion coefficient for the overdamped Brownian motion in a tilted periodic potential is calculated in closed analytical form. Universality classes and scaling properties for weak thermal noise are identified near the threshold tilt where deterministic running solutions set in. In this regime the diffusion may be greatly enhanced, as compared to free thermal diffusion with, for a realistic experimental setup, an enhancement of up to 14 orders of magnitude.
Resumo:
PURPOSE: Neurophysiological monitoring aims to improve the safety of pedicle screw placement, but few quantitative studies assess specificity and sensitivity. In this study, screw placement within the pedicle is measured (post-op CT scan, horizontal and vertical distance from the screw edge to the surface of the pedicle) and correlated with intraoperative neurophysiological stimulation thresholds. METHODS: A single surgeon placed 68 thoracic and 136 lumbar screws in 30 consecutive patients during instrumented fusion under EMG control. The female to male ratio was 1.6 and the average age was 61.3 years (SD 17.7). Radiological measurements, blinded to stimulation threshold, were done on reformatted CT reconstructions using OsiriX software. A standard deviation of the screw position of 2.8 mm was determined from pilot measurements, and a 1 mm of screw-pedicle edge distance was considered as a difference of interest (standardised difference of 0.35) leading to a power of the study of 75 % (significance level 0.05). RESULTS: Correct placement and stimulation thresholds above 10 mA were found in 71 % of screws. Twenty-two percent of screws caused cortical breach, 80 % of these had stimulation thresholds above 10 mA (sensitivity 20 %, specificity 90 %). True prediction of correct position of the screw was more frequent for lumbar than for thoracic screws. CONCLUSION: A screw stimulation threshold of >10 mA does not indicate correct pedicle screw placement. A hypothesised gradual decrease of screw stimulation thresholds was not observed as screw placement approaches the nerve root. Aside from a robust threshold of 2 mA indicating direct contact with nervous tissue, a secondary threshold appears to depend on patients' pathology and surgical conditions.
Resumo:
ABSTRACT Investigations into water potentials in the soil-plant system are of great relevance in environments with abiotic stresses, such as salinity and drought. An experiment was developed using bell pepper in a Neossolo Flúvico (Fluvent) irrigated with water of six levels of electrical conductivity (0, 1, 3, 5, 7 and 9 dS m-1) by using exclusively NaCl and by simulating the actual condition (using a mixture of salts). The treatments were arranged in a randomized block design, in a 6 × 2 factorial arrangement, with four replicates. Soil matric (Ψm) and osmotic (Ψo) potentials were determined 70 days after transplanting (DAT). Soil total potential was considered as the sum of Ψm and Ψo. Leaf water (obtained with the Scholander Chamber) and osmotic potentials were determined before sunrise (predawn) and at noon at 42 and 70 DAT. There were no significant differences between the salt sources used in the irrigation water for soil and plant water potentials. The supply of salts to the soil through irrigation water was the main factor responsible for the decrease in Ψo in the soil and in bell pepper leaves. The total potential of bell pepper at predawn reached values of -1.30 and -1.33 MPa at 42 and 70 DAT, respectively, when water of 9 dS m-1 was used in the irrigation. The total potential at noon reached -2.19 MPa. The soil subjected to the most saline treatment reached a water potential of -1.20 MPa at 70 DAT. There was no predawn equilibrium between the total water potentials of the soil and the plant, indicating that soil potential cannot be considered similar to that of the plant. The determination of the osmotic potential in the soil solution should not be neglected in saline soils, since it has strong influence on the calculation of the total potential.
Resumo:
Background Plant hormones play a pivotal role in several physiological processes during a plant's life cycle, from germination to senescence, and the determination of endogenous concentrations of hormones is essential to elucidate the role of a particular hormone in any physiological process. Availability of a sensitive and rapid method to quantify multiple classes of hormones simultaneously will greatly facilitate the investigation of signaling networks in controlling specific developmental pathways and physiological responses. Due to the presence of hormones at very low concentrations in plant tissues (10-9 M to 10-6 M) and their different chemistries, the development of a high-throughput and comprehensive method for the determination of hormones is challenging. Results The present work reports a rapid, specific and sensitive method using ultrahigh-performance liquid chromatography coupled to electrospray ionization tandem spectrometry (UPLC/ESI-MS/MS) to analyze quantitatively the major hormones found in plant tissues within six minutes, including auxins, cytokinins, gibberellins, abscisic acid, 1-amino-cyclopropane-1-carboxyic acid (the ethylene precursor), jasmonic acid and salicylic acid. Sample preparation, extraction procedures and UPLC-MS/MS conditions were optimized for the determination of all plant hormones and are summarized in a schematic extraction diagram for the analysis of small amounts of plant material without time-consuming additional steps such as purification, sample drying or re-suspension. Conclusions This new method is applicable to the analysis of dynamic changes in endogenous concentrations of hormones to study plant developmental processes or plant responses to biotic and abiotic stresses in complex tissues. An example is shown in which a hormone profiling is obtained from leaves of plants exposed to salt stress in the aromatic plant, Rosmarinus officinalis.
Resumo:
Midazolam is a widely accepted probe for phenotyping cytochrome P4503A. A gas chromatography-mass spectrometry (GC-MS)-negative chemical ionization method is presented which allows measuring very low levels of midazolam (MID), 1-OH midazolam (1OHMID) and 4-OH midazolam (4OHMID), in plasma, after derivatization with the reagent N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide. The standard curves were linear over a working range of 20 pg/ml to 5 ng/ml for the three compounds, with the mean coefficients of correlation of the calibration curves (n = 6) being 0.999 for MID and 1OHMID, and 1.0 for 4OHMID. The mean recoveries measured at 100 pg/ml, 500 pg/ml, and 2 ng/ml, ranged from 76 to 87% for MID, from 76 to 99% for 1OHMID, from 68 to 84% for 4OHMID, and from 82 to 109% for N-ethyloxazepam (internal standard). Intra- (n = 7) and inter-day (n = 8) coefficients of variation determined at three concentrations ranged from 1 to 8% for MID, from 2 to 13% for 1OHMID and from 1 to 14% for 4OHMID. The percent theoretical concentrations (accuracy) were within +/-8% for MID and 1OHMID, within +/-9% for 4OHMID at 500 pg/ml and 2 ng/ml, and within +/-28% for 4OHMID at 100 pg/ml. The limits of quantitation were found to be 10 pg/ml for the three compounds. This method can be used for phenotyping cytochrome P4503A in humans following the administration of a very low oral dose of midazolam (75 microg), without central nervous system side-effects.
Resumo:
Previous functional imaging studies have pointed to the compensatory recruitment of cortical circuits in old age in order to counterbalance the loss of neural efficiency and preserve cognitive performance. Recent electroencephalographic (EEG) analyses reported age-related deficits in the amplitude of an early positive-negative working memory (PN(wm)) component as well as changes in working memory (WM)-load related brain oscillations during the successful performance of the n-back task. To explore the age-related differences of EEG activation in the face of increasing WM demands, we assessed the PN(wm) component area, parietal alpha event-related synchronization (ERS) as well as frontal theta ERS in 32 young and 32 elderly healthy individuals who successfully performed a highly WM demanding 3-back task. PN(wm) area increased with higher memory loads (3- and 2-back > 0-back tasks) in younger subjects. Older subjects reached the maximal values for this EEG parameter during the less WM demanding 0-back task. They showed a rapid development of an alpha ERS that reached its maximal amplitude at around 800 ms after stimulus onset. In younger subjects, the late alpha ERS occurred between 1,200 and 2,000 ms and its amplitude was significantly higher compared with elders. Frontal theta ERS culmination peak decreased in a task-independent manner in older compared with younger cases. Only in younger individuals, there was a significant decrease in the phasic frontal theta ERS amplitude in the 2- and 3-back tasks compared with the detection and 0-back tasks. These observations suggest that older adults display a rapid mobilization of their neural generators within the parietal cortex to manage very low demanding WM tasks. Moreover, they are less able to activate frontal theta generators during attentional tasks compared with younger persons.
Resumo:
Self-potential (SP) data are of interest to vadose zone hydrology because of their direct sensitivity to water flow and ionic transport. There is unfortunately little consensus in the literature about how to best model SP data under partially saturated conditions, and different approaches (often supported by one laboratory data set alone) have been proposed. We argue that this lack of agreement can largely be traced to electrode effects that have not been properly taken into account. A series of drainage and imbibition experiments were considered in which we found that previously proposed approaches to remove electrode effects were unlikely to provide adequate corrections. Instead, we explicitly modeled the electrode effects together with classical SP contributions using a flow and transport model. The simulated data agreed overall with the observed SP signals and allowed decomposing the different signal contributions to analyze them separately. After reviewing other published experimental data, we suggest that most of them include electrode effects that have not been properly taken into account. Our results suggest that previously presented SP theory works well when considering the modeling uncertainties presently associated with electrode effects. Additional work is warranted to not only develop suitable electrodes for laboratory experiments but also to assure that associated electrode effects that appear inevitable in longer term experiments are predictable, so that they can be incorporated into the modeling framework.
Resumo:
Traditionally, studies dealing with muscle shortening have concentrated on assessing its impact on conduction velocity, and to this end, electrodes have been located between the end-plate and tendon regions. Possible morphologic changes in surface motor unit potentials (MUPs) as a result of muscle shortening have not, as yet, been evaluated or characterized. Using a convolutional MUP model, we investigated the effects of muscle shortening on the shape, amplitude, and duration characteristics of MUPs for different electrode positions relative to the fibre-tendon junction and for different depths of the MU in the muscle (MU-to-electrode distance). It was found that the effects of muscle shortening on MUP morphology depended not only on whether the electrodes were between the end-plate and the tendon junction or beyond the tendon junction, but also on the specific distance to this junction. When the electrodes lie between the end-plate and tendon junction, it was found that (1) the muscle shortening effect is not important for superficial MUs, (2) the sensitivity of MUP amplitude to muscle shortening increases with MU-to-electrode distance, and (3) the amplitude of the MUP negative phase is not affected by muscle shortening. This study provides a basis for the interpretation of the changes in MUP characteristics in experiments where both physiological and geometrical aspects of the muscle are varied.
Resumo:
Ethyl glucuronide (EtG) is a minor and direct metabolite of ethanol. EtG is incorporated into the growing hair allowing retrospective investigation of chronic alcohol abuse. In this study, we report the development and the validation of a method using gas chromatography-negative chemical ionization tandem mass spectrometry (GC-NCI-MS/MS) for the quantification of EtG in hair. EtG was extracted from about 30 mg of hair by aqueous incubation and purified by solid-phase extraction (SPE) using mixed mode extraction cartridges followed by derivation with perfluoropentanoic anhydride (PFPA). The analysis was performed in the selected reaction monitoring (SRM) mode using the transitions m/z 347-->163 (for the quantification) and m/z 347-->119 (for the identification) for EtG, and m/z 352-->163 for EtG-d(5) used as internal standard. For validation, we prepared quality controls (QC) using hair samples taken post mortem from 2 subjects with a known history of alcoholism. These samples were confirmed by a proficiency test with 7 participating laboratories. The assay linearity of EtG was confirmed over the range from 8.4 to 259.4 pg/mg hair, with a coefficient of determination (r(2)) above 0.999. The limit of detection (LOD) was estimated with 3.0 pg/mg. The lower limit of quantification (LLOQ) of the method was fixed at 8.4 pg/mg. Repeatability and intermediate precision (relative standard deviation, RSD%), tested at 4 QC levels, were less than 13.2%. The analytical method was applied to several hair samples obtained from autopsy cases with a history of alcoholism and/or lesions caused by alcohol. EtG concentrations in hair ranged from 60 to 820 pg/mg hair.
Resumo:
This tutorial review details some of the recent advances in signal analyses applied to event-related potential (ERP) data. These "electrical neuroimaging" analyses provide reference-independent measurements of response strength and response topography that circumvent statistical and interpretational caveats of canonical ERP analysis methods while also taking advantage of the greater information provided by high-density electrode montages. Electrical neuroimaging can be applied across scales ranging from group-averaged ERPs to single-subject and single-trial datasets. We illustrate these methods with a tutorial dataset and place particular emphasis on their suitability for studies of clinical and/or developmental populations.