945 resultados para INTRADUCTAL PROLIFERATION
Resumo:
In dog thyroid cells, insulin or IGF-1 induces cell growth and is required for the mitogenic action of TSH through cyclic AMP, of EGF, and of phorbol esters. HGF per se stimulates cell proliferation and is thus the only full mitogenic agent. TSH and cAMP enhance, whereas EGF phorbol esters and HGF repress differentiation expression. In this study, we have investigated for each factor and regulatory cascade of the intermediate step of immediate early gene induction, that is, c-myc, c-jun, jun D, jun B, c-fos, fos B, fra-1, fra-2, and egr1; fra-1 and fra-2 expressions were very low. TSH or forskolin increased the levels of c-myc, jun B, jun D, c-fos, and fos B while decreasing those of c-jun and egr1. Phorbol myristate ester stimulated the expression of all the genes. EGF and HGF stimulated the expression of all the genes except jun D and for EGF fos B. All these effects were obtained in the presence and in the absence of insulin, which shows that insulin is not necessary for the effects of the mitogens on immediate early gene expression. The definition of the repertoire of early immediate genes inductible by the various growth cascades provides a framework for the analysis of gene expression in tumors. (1) Insulin was able to induce all the protooncogenes investigated except fos B. This suggests that fos B could be the factor missing for insulin to induce mitogenesis. (2) No characteristic pattern of immediate early gene expression has been observed for insulin, which induces cell hypertrophy and is permissive for the action of the other growth factors. These effects are therefore not accounted for by a specific immediate early gene expression. On the other hand, insulin clearly enhances the effects of TSH, phorbol ester, and EGF on c-myc, junB, and c-fos expression. This suggests that the effect of insulin on mitogenesis might result from quantitative differences in the transcription complexes formed. (3) c-myc, c-fos, and jun B mRNA induction by all stimulating agents, whether inducing cell hypertrophy, or growth and dedifferentiation, or growth and differentiation, suggests that, although these expressions are not sufficient, they may be necessary for the various growth responses of thyroid cells. (4) The inhibition of c-jun and egr1 mRNA expression, and the marked induction of jun D mRNA appear to be specific features of the TSH cAMP pathway. They might be related to its differentiating action. (5) fos B, which is induced by TSH, forskolin, phorbol ester, and HGF but not by insulin, could be involved in the mitogenic action of the former factors.
Resumo:
info:eu-repo/semantics/submittedForPublication
Resumo:
Although steroid hormones are known to play a predominant role in the regulation of cell growth in hormone-sensitive cancers, their mechanisms of action, especially their interaction with growth factors and/or growth inhibitors, is poorly understood. We have recently observed that the effects of androgens and estrogens on the expression of the major protein found in human breast gross cystic disease fluid, protein-24, are opposite to their respective action on cell proliferation in human breast cancer cell lines. Somewhat surprisingly, the recent elucidation of the amino acid sequence of this progesterone binding protein reveals that this tumor marker is apolipoprotein D (apo D), a member of a superfamily of lipophilic ligand carrier proteins. The present study was designed to determine whether apo D is secreted by human prostate cancer cells and could thus be a new marker of steroid action in these cancer cells, and whether the sex steroid-induced stimulation of apo D secretion coincides with inhibition of cell proliferation. We took advantage of the biphasic pattern of the effect of steroids on the proliferation of the human prostate cancer LNCaP cell line, which offers the opportunity to discriminate between positive and negative steroid receptor-regulated cell growth processes. A 10-day exposure to low concentrations of dihydrotestosterone and testosterone caused a potent stimulation of LNCaP cell proliferation, whereas incubation with higher concentrations of these androgens led to a progressive decrease in cell proliferation towards basal levels. The biphasic action of androgens was also observed on apo D secretion, the effects on apo D secretion being inversely related to their action on LNCaP cell proliferation. Similar opposite biphasic effects were also observed with 9 other steroids, thus indicating that the stimulation of secretion of this new biochemical marker coincides with inhibition of cell proliferation in LNCaP human prostatic cancer cells.
Resumo:
Background A recombinant form of the alpha 2(IV)NC1 domain of type IV collagen has been shown to have potent anti-angiogenic activity although this peptide has not been studied in the context of proliferative retinopathies. In the current investigation we examined the potential for alpha 2(IV) NC1 to regulate retinal microvascular endothelial cell function using a range of in vitro and in vivo assay systems.
Resumo:
Purpose: We characterized interleukin-8 (IL-8) and IL-8 receptor expression (CXCR1 and CXCR2) in prostate cancer to address their significance to this disease. Experimental Design: Immunohistochemistry was conducted on 40 cases of human prostate biopsy containing histologically normal and neoplastic tissue, excised from patients with locally confined or invasive androgen-dependent prostate cancer, and 10 cases of transurethral resection of the prostate material from patients with androgen-independent disease. Results: Weak to moderate IL-8 expression was strictly localized to the apical membrane of normal prostate epithelium. In contrast, membranous expression of IL-8, CXCR1, and CXCR2 was nonapical in cancer cells of Gleason pattern 3 and 4, whereas circumferential expression was present in Gleason pattern 5 and androgen-independent prostate cancer. Each of IL-8, CXCR1, and CXCR2 were also increasingly localized to the cytoplasm of cancer cells in correlation with advancing stage of disease. Cytoplasmic expression (but not apical membrane expression) of IL-8 in Gleason pattern 3 and 4 cancer correlated with Ki-67 expression (R = 0.79; P <0.001), cyclin D1 expression (R = 0.79; P <0.001), and microvessel density (R = 0.81; P <0.001). In vitro studies on androgen-independent PC3 cells confirmed the mitogenic activity of IL-8, increasing the rate of cell proliferation through activation of both CXCR1 and CXCR2 receptors. Conclusions: We propose that the concurrent increase in IL-8 and IL-8 receptor expression in human prostate cancer induces autocrine signaling that may be functionally significant in initiating and promoting the progression of prostate cancer by underpinning cell proliferation and angiogenesis.
Resumo:
Objective. The use of glucocorticoids (GCs) in the treatment of RA is a frequent cause of bone loss. In vitro, however, this same class of steroids has been shown to promote the recruitment and/or maturation of primitive osteogenic precursors present in the colony forming unit-fibroblastic (CFU-F) fraction of human bone and marrow. In an effort to reconcile these conflicting observations, we investigated the effects of the synthetic GC dexamethasone (Dx) on parameters of growth and osteogenic differentiation in cultures of bone marrow stromal cells derived from a large cohort of adult human donors (n=30). Methods. Marrow suspensions were cultured in the absence and presence of Dx at concentrations between 10 pm and 1 µm. After 28 days we determined the number and diameter of colonies formed, the total number of cells, the surface expression of receptors for selected growth factors and extracellular matrix proteins and, based on the expression of the developmental markers alkaline phosphatase (AP) and the antigen recognized by the STRO-1 monoclonal antibody, the proportion of cells undergoing osteogenic differentiation and their extent of maturation. Results. At a physiologically equivalent concentration, Dx had no effect on the adhesion of CFU-F or on their subsequent proliferation, but did promote their osteogenic differentiation and further maturation. These effects were independent of changes in the expression of the receptors for fibroblast growth factors, insulin-like growth factor 1, nerve growth factor, platelet-derived growth factors and parathyroid hormone/parathyroid hormone-related protein, but were associated with changes in the number of cells expressing the 2 and 4, but not ß1, integrin subunits. At supraphysiological concentrations, the effects of Dx on the osteogenic recruitment and maturation of CFU-F and their progeny were maintained but at the expense of a decrease in cell number. Conclusions. A decrease in the proliferation of osteogenic precursors, but not in their differentiation or maturation, is likely to be a key factor in the genesis of GC-induced bone loss.
Resumo:
This paper is novel andreports on the in vitro establishment of 3-D cultures of human osteoblasts. These were evaluated for protein markers of bone cells. Sequentially alkaline phosphatase, calcium incorporation for matrix mineralisation and then finally osteocalcin expression were detected in cultures. The extracellular matrix was composed of type 1 collagen and as it mineralised, needle shaped crystals were often associated with matrix vesicles initiating mineralisation. In vivo implantation in nude mice showed progression of mineralisation from the inner region outward with peripheral cells in a non-mineralised matrix. Host vessels invaded the implanted cell area. The research has relevance to musculoskeletal tissue engineering.