985 resultados para INDUCED STATUS EPILEPTICUS
Resumo:
Le co-transporteur KCC2 spécifique au potassium et chlore a pour rôle principal de réduire la concentration intracellulaire de chlore, entraînant l’hyperpolarisation des courants GABAergic l’autorisant ainsi à devenir inhibiteur dans le cerveau mature. De plus, il est aussi impliqué dans le développement des synapses excitatrices, nommées aussi les épines dendritiques. Le but de notre projet est d’étudier l’effet des modifications concernant l'expression et la fonction de KCC2 dans le cortex du cerveau en développement dans un contexte de convulsions précoces. Les convulsions fébriles affectent environ 5% des enfants, et ce dès la première année de vie. Les enfants atteints de convulsions fébriles prolongées et atypiques sont plus susceptibles à développer l’épilepsie. De plus, la présence d’une malformation cérébrale prédispose au développement de convulsions fébriles atypiques, et d’épilepsie du lobe temporal. Ceci suggère que ces pathologies néonatales peuvent altérer le développement des circuits neuronaux irréversiblement. Cependant, les mécanismes qui sous-tendent ces effets ne sont pas encore compris. Nous avons pour but de comprendre l'impact des altérations de KCC2 sur la survenue des convulsions et dans la formation des épines dendritiques. Nous avons étudié KCC2 dans un modèle animal de convulsions précédemment validé, qui combine une lésion corticale à P1 (premier jour de vie postnatale), suivie d'une convulsion induite par hyperthermie à P10 (nommés rats LHS). À la suite de ces insultes, 86% des rats mâles LHS développent l’épilepsie à l’âge adulte, au même titre que des troubles d’apprentissage. À P20, ces animaux presentent une augmentation de l'expression de KCC2 associée à une hyperpolarisation du potentiel de réversion de GABA. De plus, nous avons observé des réductions dans la taille des épines dendritiques et l'amplitude des courants post-synaptiques excitateurs miniatures, ainsi qu’un déficit de mémoire spatial, et ce avant le développement des convulsions spontanées. Dans le but de rétablir les déficits observés chez les rats LHS, nous avons alors réalisé un knock-down de KCC2 par shARN spécifique par électroporation in utero. Nos résultats ont montré une diminution de la susceptibilité aux convulsions due à la lésion corticale, ainsi qu'une restauration de la taille des épines. Ainsi, l’augmentation de KCC2 à la suite d'une convulsion précoce, augmente la susceptibilité aux convulsions modifiant la morphologie des épines dendritiques, probable facteur contribuant à l’atrophie de l’hippocampe et l’occurrence des déficits cognitifs. Le deuxième objectif a été d'inspecter l’effet de la surexpression précoce de KCC2 dans le développement des épines dendritiques de l’hippocampe. Nous avons ainsi surexprimé KCC2 aussi bien in vitro dans des cultures organotypiques d’hippocampe, qu' in vivo par électroporation in utero. À l'inverse des résultats publiés dans le cortex, nous avons observé une diminution de la densité d’épines dendritiques et une augmentation de la taille des épines. Afin de confirmer la spécificité du rôle de KCC2 face à la région néocorticale étudiée, nous avons surexprimé KCC2 dans le cortex par électroporation in utero. Cette manipulation a eu pour conséquences d’augmenter la densité et la longueur des épines synaptiques de l’arbre dendritique des cellules glutamatergiques. En conséquent, ces résultats ont démontré pour la première fois, que les modifications de l’expression de KCC2 sont spécifiques à la région affectée. Ceci souligne les obstacles auxquels nous faisons face dans le développement de thérapie adéquat pour l’épilepsie ayant pour but de moduler l’expression de KCC2 de façon spécifique.
Resumo:
Multiple lines of evidence reveal that activation of the tropomyosin related kinase B (TrkB) receptor is a critical molecular mechanism underlying status epilepticus (SE) induced epilepsy development. However, the cellular consequences of such signaling remain unknown. To this point, localization of SE-induced TrkB activation to CA1 apical dendritic spines provides an anatomic clue pointing to Schaffer collateral-CA1 synaptic plasticity as one potential cellular consequence of TrkB activation. Here, we combine two-photon glutamate uncaging with two photon fluorescence lifetime imaging microscopy (2pFLIM) of fluorescence resonance energy transfer (FRET)-based sensors to specifically investigate the roles of TrkB and its canonical ligand brain derived neurotrophic factor (BDNF) in dendritic spine structural plasticity (sLTP) of CA1 pyramidal neurons in cultured hippocampal slices of rodents. To begin, we demonstrate a critical role for post-synaptic TrkB and post-synaptic BDNF in sLTP. Building on these findings, we develop a novel FRET-based sensor for TrkB activation that can report both BDNF and non-BDNF activation in a specific and reversible manner. Using this sensor, we monitor the spatiotemporal dynamics of TrkB activity during single-spine sLTP. In response to glutamate uncaging, we report a rapid (onset less than 1 minute) and sustained (lasting at least 20 minutes) activation of TrkB in the stimulated spine that depends on N-methyl-D-aspartate receptor (NMDAR)-Ca2+/Calmodulin dependent kinase II (CaMKII) signaling as well as post-synaptically synthesized BDNF. Consistent with these findings, we also demonstrate rapid, glutamate uncaging-evoked, time-locked release of BDNF from single dendritic spines using BDNF fused to superecliptic pHluorin (SEP). Finally, to elucidate the molecular mechanisms by which TrkB activation leads to sLTP, we examined the dependence of Rho GTPase activity - known mediators of sLTP - on BDNF-TrkB signaling. Through the use of previously described FRET-based sensors, we find that the activities of ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 (Cdc42) require BDNF-TrkB signaling. Taken together, these findings reveal a spine-autonomous, autocrine signaling mechanism involving NMDAR-CaMKII dependent BDNF release from stimulated dendritic spines leading to TrkB activation and subsequent activation of the downstream molecules Rac1 and Cdc42 in these same spines that proves critical for sLTP. In conclusion, these results highlight structural plasticity as one cellular consequence of CA1 dendritic spine TrkB activation that may potentially contribute to larger, circuit-level changes underlying SE-induced epilepsy.
Resumo:
Traumatic brain injury (TBI) produces several cellular changes, such as gliosis, axonal and dendritic plasticity, and inhibition-excitation imbalance, as well as cell death, which can initiate epileptogenesis. It has been demonstrated that dysfunction of the inhibitory components of the cerebral cortex after injury may cause status epilepticus in experimental models; we proposed to analyze the response of cortical interneurons and astrocytes after TBI in humans. Twelve contusion samples were evaluated, identifying the expression of glial fibrillary acidic protein (GFAP) and calcium-binding proteins (CaBPs). The study was made in sectors with and without preserved cytoarchitecture evaluated with NeuN immunoreactivity (IR). In sectors with total loss of NeuN-IR the results showed a remarkable loss of CaBP-IR both in neuropil and somata. In sectors with conserved cytoarchitecture less drastic changes in CaBP-IR were detected. These changes include a decrease in the amount of parvalbumin (PV-IR) neurons in layer II, an increase of calbindin (CB-IR) neurons in layers III and V, and an increase in calretinin (CR-IR) neurons in layer II. We also observed glial fibrillary acidic protein immunoreactivity (GFAP-IR) in the white matter, in the gray-white matter transition, and around the sectors with NeuN-IR total loss. These findings may reflect dynamic activity as a consequence of the lesion that is associated with changes in the excitatory circuits of neighboring hyperactivated glutamatergic neurons, possibly due to the primary impact, or secondary events such as hypoxia-ischemia. Temporal evolution of these changes may be the substrate linking severe cortical contusion and the resulting epileptogenic activity observed in some patients.
Resumo:
The incidence of sudden unexpected death in epilepsy (SUDEP) in Our epilepsy unit over an 8-year period was analyzed to determine a possible association between phase of the moon and SUDEP. Analysis revealed that the number of SUDEPs was highest in full moon (70%), followed by waxing moon (20%) and new moon (10%). No SUDEPs Occurred during the waning cycle. These preliminary findings suggest that the full moon appears to correlate with SUDEP. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The brain is a complex system that, in the normal condition, has emergent properties like those associated with activity-dependent plasticity in learning and memory, and in pathological situations, manifests abnormal long-term phenomena like the epilepsies. Data from our laboratory and from the literature were classified qualitatively as sources of complexity and emergent properties from behavior to electrophysiological, cellular, molecular, and computational levels. We used such models as brainstem-dependent acute audiogenic seizures and forebrain-dependent kindled audiogenic seizures. Additionally we used chemical OF electrical experimental models of temporal lobe epilepsy that induce status epilepticus with behavioral, anatomical, and molecular sequelae such as spontaneous recurrent seizures and long-term plastic changes. Current Computational neuroscience tools will help the interpretation. storage, and sharing of the exponential growth of information derived from those studies. These strategies are considered solutions to deal with the complexity of brain pathologies such as the epilepsies. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Studies have provided evidence of the important effects of omega-3 fatty acid on the brain in neurological conditions, including epilepsy. Previous data have indicated that omega-3 fatty acids lead to prevention of status epilepticus-associated neuropathological changes in the hippocampal formation of rats with epilepsy. Omega-3 fatty acid supplementation has resulted in extensive preservation of GABAergic cells in animals with epilepsy. This study investigated the interplay of these effects with neurogenesis and brain-derived neurotrophic factor (BDNF). The results clearly showed a positive effect of long-term omega-3 fatty acid supplementation on brain plasticity in animals with epilepsy. Enhanced hippocampal neurogenesis and BDNF levels and preservation of interneurons expressing parvalbumin were observed. Parvalbumin-positive cells were identified as surviving instead of newly formed cells. Additional investigations are needed to determine the electrophysiological properties of the newly formed cells and to clarify whether the effects of omega-3 fatty acids on brain plasticity are accompanied by functional gain in animals with epilepsy. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
O Estado de Mal Epiléptico é uma situação com expressão clínica variável, relacionando-se o seu prognóstico com a etiologia subjacente. O Estado de Mal Convulsivo constitui uma emergência médica associada com elevadas taxas de morbilidade e de mortalidade, sendo essencial uma intervenção terapêutica precoce e adequada. Os autores apresentam um esquema de protocolo terapêutico a utilizar neste quadro.
Resumo:
Acute infantile encephalopathy predominantly affecting the frontal lobes (AIEF) has been described as a new entity, based on MRI findings (acute abnormal diffusion-weighted imaging signals in the frontal lobes followed by atrophy) and exclusion of other acute encephalopathies. Patients present with acute onset of fever, status epilepticus, and coma. Different causal mechanisms have been suggested such as localized viral infection, toxic insult due to cytokines, or postictal damage. Only children of Japanese descent have been described. We report the case of a Caucasian girl whose history and MRI findings were similar to the Japanese cases. She had a massive regression with verbal apraxia, while cognitive development was less affected; she initially presented with a cluster of complex partial seizures (and not convulsive status epilepticus), making epileptic or post anoxic-ischemic sequelae highly unlikely. The place of this proposed entity among other recently described acute encephalopathies with abnormal diffusion on MRI is discussed.
Resumo:
In 2012, intramuscular midazolam appears as effective as intravenous lorezepam for the first line treatment of convulsive status epilepticus. Perampanel, a new anti-epileptic drug, will be soon available. Two oral treatments are now available for stroke prevention in atrial fibrillation setting. The methylphenidate and the Tai Chi could increase the walk capacity of patients suffering from Parkinson disease. A comprehensive cardiac work-up is essential for some congenital myopathy. A new drug against migraine seems free from vasoconstrictive effect. Antioxidants are harmful in Alzheimer disease. Some oral medication will be available for multiple sclerosis.
Resumo:
OBJECTIVES: Recommendations for EEG monitoring in the ICU are lacking. The Neurointensive Care Section of the ESICM assembled a multidisciplinary group to establish consensus recommendations on the use of EEG in the ICU. METHODS: A systematic review was performed and 42 studies were included. Data were extracted using the PICO approach, including: (a) population, i.e. ICU patients with at least one of the following: traumatic brain injury, subarachnoid hemorrhage, intracerebral hemorrhage, stroke, coma after cardiac arrest, septic and metabolic encephalopathy, encephalitis, and status epilepticus; (b) intervention, i.e. EEG monitoring of at least 30 min duration; (c) control, i.e. intermittent vs. continuous EEG, as no studies compared patients with a specific clinical condition, with and without EEG monitoring; (d) outcome endpoints, i.e. seizure detection, ischemia detection, and prognostication. After selection, evidence was classified and recommendations developed using the GRADE system. RECOMMENDATIONS: The panel recommends EEG in generalized convulsive status epilepticus and to rule out nonconvulsive seizures in brain-injured patients and in comatose ICU patients without primary brain injury who have unexplained and persistent altered consciousness. We suggest EEG to detect ischemia in comatose patients with subarachnoid hemorrhage and to improve prognostication of coma after cardiac arrest. We recommend continuous over intermittent EEG for refractory status epilepticus and suggest it for patients with status epilepticus and suspected ongoing seizures and for comatose patients with unexplained and persistent altered consciousness. CONCLUSIONS: EEG monitoring is an important diagnostic tool for specific indications. Further data are necessary to understand its potential for ischemia assessment and coma prognostication.
Resumo:
Treatment of status epilepticus (SE) consists in the sequential administration of three lines of drugs. The first is represented by benzodiazepines, and enjoys quite robust scientific evidence. The second one includes (phos-) phenytoin, valproate, phenobarbital, and increasingly levetiracetam, but its rationale is relatively scarce. The third line is pharmacological coma induction with barbiturates, propofol, or midazolam, which lacks the support of prospective, controlled studies and is reserved for refractory SE. Several other drugs are used after failure of this scheme, including newer antiepileptic compounds, other medications, and non-pharmacological approaches; no comparative assessment of their respective role has been conducted. It is important to tailor this relatively simple protocol to each particular situation; the supposed advantages of coma induction should be balanced with the morbidity related to prolonged mechanical ventilation. Awide consensus exists to treat generalized-convulsive SE and SE in coma soon and aggressively, to prevent a dismal outcome. On the other side, it is unclear if complex-partial SE induces permanent neuronal damage, and absence SE has an excellent prognosis: it appears therefore advisable not to proceed automatically to coma induction in these cases. SE related to post-anoxic coma has generally a poor prognosis, but some selected cases seem to be amenable to a better outcome if treated. SE prognosis depends on etiology, the biological background including age and comorbidities, and, possibly, treatment; each of these points deserves to be specifically addressed. A simple prognostic score has been recently validated and, helping to orient early treatment strategies and improve SE management.
Resumo:
Perampanel is one of the latest released antiepileptic drugs (AEDs). Early studies suggest no significant liver enzyme induction from this compound. We report on two patients with medically resistant epilepsy, who had perampanel added to their usual regimen. Both experienced a worsening of their epilepsy and presented in convulsive status epilepticus; concurrent antiepileptic drug levels (phenytoin, phenobarbital, rufinamide) were significantly decreased (<50%) in comparison with levels prior to perampanel introduction. Intravenous load and significant increase of maintenance dosages were needed to restore therapeutic drug levels. In one patient, further increase of perampanel resulted in a new drop of phenytoin level. This suggests that perampanel could, in some subjects, induce liver enzymes and interact with concomitant AEDs; monitoring levels of concomitant compounds could be useful.
Resumo:
The knowledge in internal medicine is constantly and so rapidly evolving that practices have to be updated and adjusted to recent scientific rules, in order to improve quality and efficiency in the day to day activities. Residents in the Service of internal medicine of the Lausanne University present several relevant papers published in 2012, whose results are susceptible to change the daily hospital practices. From modest impacts to real revolution, a variety of subjects are discussed in the perspective of evidence based medicine.