954 resultados para INDUCED RESPIRATORY DEPRESSION
Resumo:
Self-regulation of blood glucose in diabetics via insulin administration introduces the risk of hypoglycemia. Previous studies have shown hypoglycemia damages the dentate gyrus, an area of the hippocampus associated with anxiety- and depressive-like behavior. To date, only depressive-like behaviors have been observed following moderate hypoglycemia. This study sought to examine whether acute moderate hypoglycemia induces both behaviors due to high clinical comorbidity. One episode of moderate hypoglycemia was induced in a male Sprague-Dawley rat. Twenty-four hours later, hippocampal function was evaluated via the elevated plus maze and the forced swim test to assess anxiety-like and depressive-like behavior. Results, though not statistically significant, suggested that acute moderate hypoglycemia may increase anxiety- and depressive-like behavior. These findings may elucidate hypoglycemia-related behavioral changes.
Resumo:
A novel recombinant respiratory syncytial virus (RSV) subunit vaccine, designated BBG2Na, was administered to 108 healthy adults randomly assigned to receive 10, 100, or 300 μg of BBG2Na in aluminum phosphate or saline placebo. Each subject received 1, 2, or 3 intramuscular injections of the assigned dose at monthly intervals. Local and systemic reactions were mild, and no evidence of harmful properties of BBG2Na was reported. The highest ELISA and virus-neutralizing (VN) antibody responses were evident in the 100- and 300-μg groups; second or third injections provided no significant boosts against RSV-derived antigens. BBG2Na induced ⩾2-fold and ⩾4-fold increases in G2Na-specific ELISA units in up to 100% and 57% of subjects, respectively; corresponding RSV-A–specific responses were 89% and 67%. Furthermore, up to 71% of subjects had ⩾2-fold VN titer increases. Antibody responses to 2 murine lung protective epitopes were also highly boosted after vaccination. Therefore, BBG2Na is safe, well tolerated, and highly immunogenic in RSV-seropositive adults
Multiple Enzymatic Activities Associated with Severe Acute Respiratory Syndrome Coronavirus Helicase
Resumo:
Severe acute respiratory syndrome coronavirus (SARS-CoV), a newly identified group 2 coronavirus, is the causative agent of severe acute respiratory syndrome, a life-threatening form of pneumonia in humans. Coronavirus replication and transcription are highly specialized processes of cytoplasmic RNA synthesis that localize to virus-induced membrane structures and were recently proposed to involve a complex enzymatic machinery that, besides RNA-dependent RNA polymerase, helicase, and protease activities, also involves a series of RNA-processing enzymes that are not found in most other RNA virus families. Here, we characterized the enzymatic activities of a recombinant form of the SARS-CoV helicase (nonstructural protein [nsp] 13), a superfamily 1 helicase with an N-terminal zinc-binding domain. We report that nsp13 has both RNA and DNA duplex-unwinding activities. SARS-CoV nsp13 unwinds its substrates in a 5'-to-3' direction and features a remarkable processivity, allowing efficient strand separation of extended regions of double-stranded RNA and DNA. Characterization of the nsp13-associated (deoxy)nucleoside triphosphatase ([dNTPase) activities revealed that all natural nucleotides and deoxynucleotides are substrates of nsp13, with ATP, dATP, and GTP being hydrolyzed slightly more efficiently than other nucleotides. Furthermore, we established an RNA 5'-triphosphatase activity for the SARS-CoV nsp13 helicase which may be involved in the formation of the 5' cap structure of viral RNAs. The data suggest that the (d)NTPase and RNA 5'-triphosphatase activities of nsp13 have a common active site. Finally, we established that, in SARS-CoV-infected Vero E6 cells, nsp13 localizes to membranes that appear to be derived from the endoplasmic reticulum and are the likely site of SARS-CoV RNA synthesis.
Resumo:
In this paper we follow on from our research into SLPI by assessing the immunomodulatory activity of elafin - an antiprotease related to SLPI and also present on the respiratory tract. We demonstrate for the first time that exogenously applied elafin inhibits lipopolysaccharide-induced activation of the NF-kappaB and AP-1 pathways in monocytes. I designed this project and supervised Marcus Butler during his MD thesis.
Resumo:
BACKGROUND: Although severe encephalopathy has been proposed as a possible contraindication to the use of noninvasive positive-pressure ventilation (NPPV), increasing clinical reports showed it was effective in patients with impaired consciousness and even coma secondary to acute respiratory failure, especially hypercapnic acute respiratory failure (HARF). To further evaluate the effectiveness and safety of NPPV for severe hypercapnic encephalopathy, a prospective case-control study was conducted at a university respiratory intensive care unit (RICU) in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD) during the past 3 years. METHODS: Forty-three of 68 consecutive AECOPD patients requiring ventilatory support for HARF were divided into 2 groups, which were carefully matched for age, sex, COPD course, tobacco use and previous hospitalization history, according to the severity of encephalopathy, 22 patients with Glasgow coma scale (GCS) <10 served as group A and 21 with GCS = 10 as group B. RESULTS: Compared with group B, group A had a higher level of baseline arterial partial CO2 pressure ((102 +/- 27) mmHg vs (74 +/- 17) mmHg, P <0.01), lower levels of GCS (7.5 +/- 1.9 vs 12.2 +/- 1.8, P <0.01), arterial pH value (7.18 +/- 0.06 vs 7.28 +/- 0.07, P <0.01) and partial O(2) pressure/fraction of inspired O(2) ratio (168 +/- 39 vs 189 +/- 33, P <0.05). The NPPV success rate and hospital mortality were 73% (16/22) and 14% (3/22) respectively in group A, which were comparable to those in group B (68% (15/21) and 14% (3/21) respectively, all P > 0.05), but group A needed an average of 7 cm H2O higher of maximal pressure support during NPPV, and 4, 4 and 7 days longer of NPPV time, RICU stay and hospital stay respectively than group B (P <0.05 or P <0.01). NPPV therapy failed in 12 patients (6 in each group) because of excessive airway secretions (7 patients), hemodynamic instability (2), worsening of dyspnea and deterioration of gas exchange (2), and gastric content aspiration (1). CONCLUSIONS: Selected patients with severe hypercapnic encephalopathy secondary to HARF can be treated as effectively and safely with NPPV as awake patients with HARF due to AECOPD; a trial of NPPV should be instituted to reduce the need of endotracheal intubation in patients with severe hypercapnic encephalopathy who are otherwise good candidates for NPPV due to AECOPD.
Resumo:
Aims/hypothesis: Patients with type 1 diabetes mellitus are more susceptible than healthy individuals to exercise-induced oxidative stress and vascular endothelial dysfunction, which has important implications for the progression of disease. Thus, in the present study, we designed a randomised double-blind, placebo-controlled trial to test the original hypothesis that oral prophylaxis with vitamin C attenuates rest and exercise-induced free radical-mediated lipid peroxidation in type 1 diabetes mellitus. Methods: All data were collected from hospitalised diabetic patients. The electron paramagnetic resonance spectroscopic detection of spin-trapped a-phenyl-tert-butylnitrone (PBN) adducts was combined with the use of supporting markers of lipid peroxidation and non-enzymatic antioxidants to assess exercise-induced oxidative stress in male patients with type 1 diabetes (HbA1c 7.9±1%, n=12) and healthy controls (HbA1c 4.6±0.5%, n=14). Following participant randomisation using numbers in a sealed envelope, venous blood samples were obtained at rest, after a maximal exercise challenge and before and 2 h after oral ingestion of 1 g ascorbate or placebo. Participants and lead investigators were blinded to the administration of either placebo or ascorbate treatments. Primary outcome was the difference in changes in free radicals following ascorbate ingestion. Resuts: Six diabetic patients and seven healthy control participants were randomised to each of the placebo and ascorbate groups. Diabetic patients (n=12) exhibited an elevated concentration of PBN adducts (p<0.05 vs healthy, n=14), which were confirmed as secondary, lipid-derived oxygen-centred alkoxyl (RO•) radicals (a nitrogen=1.37 mT and aßhydrogen=0.18 mT). Lipid hydroperoxides were also selectively elevated and associated with a depression of retinol and lycopene (p<0.05 vs healthy). Vitamin C supplementation increased plasma vitamin C concentration to a similar degree in both groups (p<0.05 vs pre-supplementation) and attenuated the exercise-induced oxidative stress response (p<0.05 vs healthy). There were no selective treatment differences between groups in the primary outcome variable. Conclusions/ interpretation: These findings are the first to suggest that oral vitamin C supplementation provides an effective prophylaxis against exercise-induced free radical-mediated lipid peroxidation in human diabetic blood.
Resumo:
Many degenerative diseases are associated with increased oxidative stress. Creatine has the potential to act as an indirect and direct antioxidant; however, limited data exist to evaluate the antioxidant capabdities of creatine supplementation within in vivo human systems. This study aimed to investigate the effects of oral creatine supplementation on markers of oxidative stress and antioxidant defenses following exhaustive cycling exercise. Following preliminary testing and two additional familiarization sessions, 18 active males repeated two exhaustive incremental cycling trials (T1 and T2) separated by exactly 7 days. The subjects were assigned, in a double-blind manner, to receive either 20 g of creatine (Cr) or a placebo (P) for the 5 days preceding T2. Breath-by-breath respiratory data and heart rate were continually recorded throughout the exercise protocol and blood samples were obtained at rest (preexercise), at the end of exercise (postexercise), and the day following exercise (post24 h). Serum hypdroperoxide concentrations were elevated at postexercise by 17 +/- 5% above preexercise values (p = 0.030). However, supplementation did not influence lipid peroxidation (serum hypdroperoxide concentrations), resistance of low density lipoprotein to oxidative stress (t(1/2max) LDL oxidation) and plasma concentrations of non-enzymatic antioxidants (retinol, alpha-carotene, beta-carotene, alpha-tocopherol, gamma-tocopherol, lycopene and vitamin Q. Heart rate and oxygen uptake responses to exercise were not affected by supplementation. These findings suggest that short-term creatine supplementation does not enhance non-enzymatic antioxidant defence or protect against lipid peroxidation induced by exhaustive cycling in healthy males.
Resumo:
Background: Neutrophil elastase (NE) activity is increased in lung diseases such as a1-antitrypsin (A1AT) deficiency and pneumonia. It has recently been shown to induce expression of cathepsin B and matrix metalloprotease 2 (MMP-2) in vitro and in a mouse model. It is postulated that increased cathepsin B and MMP-2 in acute and chronic lung diseases result from high levels of extracellular NE and that expression of these proteases could be inhibited by A1AT augmentation therapy.
Methods: Cathepsin and MMP activities were assessed in bronchoalveolar lavage (BAL) fluid from patients with A1AT deficiency, pneumonia and control subjects. Macrophages were exposed to BAL fluid rich in free NE from patients with pneumonia following pretreatment with A1AT. MMP-2, cathepsin B, secretory leucoprotease inhibitor (SLPI) and lactoferrin levels were determined in BAL fluid from A1AT-deficient patients before and after aerosolisation of A1AT.
Results: BAL fluid from both patients with pneumonia and those with A1AT deficiency containing free NE had increased cathepsin B and MMP-2 activities compared with BAL fluid from healthy volunteers. The addition of A1AT to BAL fluid from patients with pneumonia greatly reduced NE-induced cathepsin B and MMP-2 expression in macrophages in vitro. A1AT augmentation therapy to A1AT-deficient individuals also reduced cathepsin B and MMP-2 activity in BAL fluid in vivo. Furthermore, A1AT-deficient patients had higher levels of SLPI and lactoferrin after A1AT augmentation therapy.
Conclusion: These findings suggest a novel role for A1AT inhibition of NE-induced upregulation of MMP and cathepsin expression both in vitro and in vivo.
Resumo:
Purpose The purpose of this study was to investigate if pepsin measured in sputum is a useful marker of pulmonary aspiration secondary to gastroesophageal reflux (GER) in children. It is possible that the induced sputum procedure could cause GER and invalidate the results. The hypothesis stated that healthy children (those without history of respiratory or gastroesophageal symptoms) would not have pepsin detected in induced sputum. Methods Children attending surgical outpatients in the Royal Belfast Hospital for Sick Children (Belfast, Northern Ireland) were recruited. After spirometry, sputum was obtained by induction with hypertonic 3% saline. Spirometry was repeated, and complications were noted. An “in-house” enzyme-linked immunosorbent assay was used to measure pepsin concentration in sputum. The lower limit of detection of pepsin was 1.19 ng/mL. Results Children (n = 21) aged 4 to 16 years were recruited. Twenty children completed the study. No adverse effects were reported. Pepsin was detected in 17 (85%) of 20 sputum samples. Conclusions The act of sputum induction appears to induce physiologic GER in a healthy childhood population. The analysis of pepsin in sputum obtained by sputum induction is therefore not useful in the investigation of reflux-related respiratory disease.
Resumo:
RATIONALE:
Simvastatin inhibits inflammatory responses in vitro and in murine models of lung inflammation in vivo. As simvastatin modulates a number of the underlying processes described in acute lung injury (ALI), it may be a potential therapeutic option.
OBJECTIVES:
To investigate in vivo if simvastatin modulates mechanisms important in the development of ALI in a model of acute lung inflammation induced by inhalation of lipopolysaccharide (LPS) in healthy human volunteers.
METHODS:
Thirty healthy subjects were enrolled in a double-blind, placebo-controlled study. Subjects were randomized to receive 40 mg or 80 mg of simvastatin or placebo (n = 10/group) for 4 days before inhalation of 50 microg LPS. Measurements were performed in bronchoalveolar lavage fluid (BALF) obtained at 6 hours and plasma obtained at 24 hours after LPS challenge. Nuclear translocation of nuclear factor-kappaB (NF-kappaB) was measured in monocyte-derived macrophages.
MEASUREMENTS AND MAIN RESULTS:
Pretreatment with simvastatin reduced LPS-induced BALF neutrophilia, myeloperoxidase, tumor necrosis factor-alpha, matrix metalloproteinases 7, 8, and 9, and C-reactive protein (CRP) as well as plasma CRP (all P < 0.05 vs. placebo). There was no significant difference between simvastatin 40 mg and 80 mg. BALF from subjects post-LPS inhalation induced a threefold up-regulation in nuclear NF-kappaB in monocyte-derived macrophages (P < 0.001); pretreatment with simvastatin reduced this by 35% (P < 0.001).
CONCLUSIONS:
Simvastatin has antiinflammatory effects in the pulmonary and systemic compartment in humans exposed to inhaled LPS.
Resumo:
Objectives: Acute respiratory distress syndrome (ARDS) is characterized by alveolar-capillary barrier damage. Matrix metalloproteinases (MMPs) are implicated in the pathogenesis of ARDS. In the Beta Agonists in Acute Lung Injury Trial, intravenous salbutamol reduced extravascular lung water (EVLW) in patients with ARDS at day 4 but not inflammatory cytokines or neutrophil recruitment. We hypothesized that salbutamol reduces MMP activity in ARDS.
Methods: MMP-1/-2/-3/-7/-8/-9/-12/-13 was measured in supernatants of distal lung epithelial cells, type II alveolar cells, and bronchoalveolar lavage (BAL) fluid from patients in the Beta Agonists in Acute Lung Injury study by multiplex bead array and tissue inhibitors of metalloproteinases (TIMPs)-1/-2 by enzyme-linked immunosorbent assay. MMP-9 protein and activity levels were further measured by gelatin zymography and fluorokine assay.
Measurements and Main Results: BAL fluid MMP-1/-2/-3 declined by day 4, whereas total MMP-9 tended to increase. Unexpectedly, salbutamol augmented MMP-9 activity. Salbutamol induced 33.7- and 13.2-fold upregulation in total and lipocalin-associated MMP-9, respectively at day 4, compared with 2.0- and 1.3-fold increase in the placebo group, p < 0.03. Salbutamol did not affect BAL fluid TIMP-1/-2. Net active MMP-9 was higher in the salbutamol group (4222 pg/mL, interquartile range: 513-7551) at day 4 compared with placebo (151 pg/mL, 124-2108), p = 0.012. Subjects with an increase in BAL fluid MMP-9 during the 4-day period had lower EVLW measurements than those in whom MMP-9 fell (10 vs. 17 mL/kg, p = 0.004): change in lung water correlated inversely with change in MMP-9, r = -.54, p = 0.0296. Salbutamol up-regulated MMP-9 and down-regulated TIMP-1/-2 secretion in vitro by distal lung epithelial cells. Inhibition of MMP-9 activity in cultures of type II alveolar epithelial cells reduced wound healing.
Conclusions: Salbutamol specifically up-regulates MMP-9 in vitro and in vivo in patients with ARDS. Up-regulated MMP-9 is associated with a reduction in EVLW. MMP-9 activity is required for alveolar epithelial wound healing in vitro. Data suggest MMP-9 may have a previously unrecognized beneficial role in reducing pulmonary edema in ARDS by improving alveolar epithelial healing.