915 resultados para INCLUSIONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new online method to analyse water isotopes of speleothem fluid inclusions using a wavelength scanned cavity ring down spectroscopy (WS-CRDS) instrument is presented. This novel technique allows us simultaneously to measure hydrogen and oxygen isotopes for a released aliquot of water. To do so, we designed a new simple line that allows the online water extraction and isotope analysis of speleothem samples. The specificity of the method lies in the fact that fluid inclusions release is made on a standard water background, which mainly improves the δ D robustness. To saturate the line, a peristaltic pump continuously injects standard water into the line that is permanently heated to 140 °C and flushed with dry nitrogen gas. This permits instantaneous and complete vaporisation of the standard water, resulting in an artificial water background with well-known δ D and δ18O values. The speleothem sample is placed in a copper tube, attached to the line, and after system stabilisation it is crushed using a simple hydraulic device to liberate speleothem fluid inclusions water. The released water is carried by the nitrogen/standard water gas stream directly to a Picarro L1102-i for isotope determination. To test the accuracy and reproducibility of the line and to measure standard water during speleothem measurements, a syringe injection unit was added to the line. Peak evaluation is done similarly as in gas chromatography to obtain &delta D; and δ18O isotopic compositions of measured water aliquots. Precision is better than 1.5 ‰ for δ D and 0.4 ‰ for δ18O for water measurements for an extended range (−210 to 0 ‰ for δ D and −27 to 0 ‰ for δ18O) primarily dependent on the amount of water released from speleothem fluid inclusions and secondarily on the isotopic composition of the sample. The results show that WS-CRDS technology is suitable for speleothem fluid inclusion measurements and gives results that are comparable to the isotope ratio mass spectrometry (IRMS) technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A well developed theoretical framework is available in which paleofluid properties, such as chemical composition and density, can be reconstructed from fluid inclusions in minerals that have undergone no ductile deformation. The present study extends this framework to encompass fluid inclusions hosted by quartz that has undergone weak ductile deformation following fluid entrapment. Recent experiments have shown that such deformation causes inclusions to become dismembered into clusters of irregularly shaped relict inclusions surrounded by planar arrays of tiny, new-formed (neonate) inclusions. Comparison of the experimental samples with a naturally sheared quartz vein from Grimsel Pass, Aar Massif, Central Alps, Switzerland, reveals striking similarities. This strong concordance justifies applying the experimentally derived rules of fluid inclusion behaviour to nature. Thus, planar arrays of dismembered inclusions defining cleavage planes in quartz may be taken as diagnostic of small amounts of intracrystalline strain. Deformed inclusions preserve their pre-deformation concentration ratios of gases to electrolytes, but their H2O contents typically have changed. Morphologically intact inclusions, in contrast, preserve the pre-deformation composition and density of their originally trapped fluid. The orientation of the maximum principal compressive stress (σ1σ1) at the time of shear deformation can be derived from the pole to the cleavage plane within which the dismembered inclusions are aligned. Finally, the density of neonate inclusions is commensurate with the pressure value of σ1σ1 at the temperature and time of deformation. This last rule offers a means to estimate magnitudes of shear stresses from fluid inclusion studies. Application of this new paleopiezometer approach to the Grimsel vein yields a differential stress (σ1–σ3σ1–σ3) of ∼300 MPa∼300 MPa at View the MathML source390±30°C during late Miocene NNW–SSE orogenic shortening and regional uplift of the Aar Massif. This differential stress resulted in strain-hardening of the quartz at very low total strain (<5%<5%) while nearby shear zones were accommodating significant displacements. Further implementation of these experimentally derived rules should provide new insight into processes of fluid–rock interaction in the ductile regime within the Earth's crust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cathodoluminescence (CL) studies have previously shown that some secondary fluid inclusions in luminescent quartz are surrounded by dark, non-luminescent patches, resulting from fracture-sealing by late, trace-element-poor quartz. This finding has led to the tacit generalization that all dark CL patches indicate influx of low temperature, late-stage fluids. In this study we have examined natural and synthetic hydrothermal quartz crystals using CL imaging supplemented by in-situ elemental analysis. The results lead us to propose that all natural, liquid-water-bearing inclusions in quartz, whether trapped on former crystal growth surfaces (i.e., of primary origin) or in healed fractures (i.e., of pseudosecondary or secondary origin), are surrounded by three-dimensional, non-luminescent patches. Cross-cutting relations show that the patches form after entrapment of the fluid inclusions and therefore they are not diagnostic of the timing of fluid entrapment. Instead, the dark patches reveal the mechanism by which fluid inclusions spontaneously approach morphological equilibrium and purify their host quartz over geological time. Fluid inclusions that contain solvent water perpetually dissolve and reprecipitate their walls, gradually adopting low-energy euhedral and equant shapes. Defects in the host quartz constitute solubility gradients that drive physical migration of the inclusions over distances of tens of μm (commonly) up to several mm (rarely). Inclusions thus sequester from their walls any trace elements (e.g., Li, Al, Na, Ti) present in excess of equilibrium concentrations, thereby chemically purifying their host crystals in a process analogous to industrial zone refining. Non-luminescent patches of quartz are left in their wake. Fluid inclusions that contain no liquid water as solvent (e.g., inclusions of low-density H2O vapor or other non-aqueous volatiles) do not undergo this process and therefore do not migrate, do not modify their shapes with time, and are not associated with dark-CL zone-refined patches. This new understanding has implications for the interpretation of solids within fluid inclusions (e.g., Ti- and Al-minerals) and for the elemental analysis of hydrothermal and metamorphic quartz and its fluid inclusions by microbeam methods such as LA-ICPMS and SIMS. As Ti is a common trace element in quartz, its sequestration by fluid inclusions and its depletion in zone-refined patches impacts on applications of the Ti-in-quartz geothermometer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deuterium (δD) and oxygen (δ18O) isotopes are powerful tracers of the hydrological cycle and have been extensively used for paleoclimate reconstructions as they can provide information on past precipitation, temperature and atmospheric circulation. More recently, the use of δ17O excess derived from precise measurement of δ17O and δ18O gives new and additional insights in tracing the hydrological cycle whereas uncertainties surround this proxy. However, 17O excess could provide additional information on the atmospheric conditions at the moisture source as well as about fractionations associated with transport and site processes. In this paper we trace water stable isotopes (δD,δ17O and δ18O) along their path from precipitation to cave drip water and finally to speleothem fluid inclusions for Milandre cave in northwestern Switzerland. A two year-long daily resolved precipitation isotope record close to the cave site is compared to collected cave drip water (3 months average resolution) and fluid inclusions of modern and Holocene stalagmites. Amount weighted mean δD,δ18O and δ17O are -71.0‰, -9.9‰, -5.2‰ for precipitation, -60.3‰, -8.7‰, -4.6‰ for cave drip water and -61.3‰, -8.3‰, -4.7‰ for recent fluid inclusions respectively. Second order parameters have also been derived in precipitation and drip water and present similar values with 18 per meg for 17O excess whereas d-excess is 1.5‰ more negative in drip water. Furthermore, the atmospheric signal is shifted towards enriched values in the drip water and fluid inclusions (Δ of ~ + 10‰ for δD). The isotopic composition of cave drip water exhibits a weak seasonal signal which is shifted by around 8 - 10 months (groundwater residence time) when compared to the precipitation. Moreover, we carried out the first δ17O measurement in speleothem fluid inclusions, as well as the first comparison of the δ17 O behaviour from the meteoric water to the fluid inclusions entrapment in speleothems. This study on precipitation, drip water and fluid inclusions will be used as a speleothem proxy calibration for Milandre cave in order to reconstruct paleotemperatures and moisture source variations for Western Central Europe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serpentinites release at sub-arc depths volatiles and several fluid-mobile trace elements found in arc magmas. Constraining element uptake in these rocks and defining the trace element composition of fluids released upon serpentinite dehydration can improve our understanding of mass transfer across subduction zones and to volcanic arcs. The eclogite-facies garnet metaperidotite and chlorite harzburgite bodies embedded in paragneiss of the subduction melange from Cima di Gagnone derive from serpentinized peridotite protoliths and are unique examples of ultramafic rocks that experienced subduction metasomatism and devolatilization. In these rocks, metamorphic olivine and garnet trap polyphase inclusions representing the fluid released during high-pressure breakdown of antigorite and chlorite. Combining major element mapping and laser-ablation ICP-MS bulk inclusion analysis, we characterize the mineral content of polyphase inclusions and quantify the fluid composition. Silicates, Cl-bearing phases, sulphides, carbonates, and oxides document post-entrapment mineral growth in the inclusions starting immediately after fluid entrapment. Compositional data reveal the presence of two different fluid types. The first (type A) records a fluid prominently enriched in fluid-mobile elements, with Cl, Cs, Pb, As, Sb concentrations up to 10(3) PM (primitive mantle), similar to 10(2) PM Tit Ba, while Rb, B, Sr, Li, U concentrations are of the order of 10(1) PM, and alkalis are similar to 2 PM. The second fluid (type B) has considerably lower fluid-mobile element enrichments, but its enrichment patterns are comparable to type A fluid. Our data reveal multistage fluid uptake in these peridotite bodies, including selective element enrichment during seafloor alteration, followed by fluid-rock interaction along with subduction metamorphism in the plate interface melange. Here, infiltration of sediment-equilibrated fluid produced significant enrichment of the serpentinites in As, Sb, B, Pb, an enriched trace element pattern that was then transferred to the fluid released at greater depth upon serpentine dehydration (type A fluid). The type B fluid hosted by garnet may record the composition of the chlorite breakdown fluid released at even greater depth. The Gagnone study-case demonstrates that serpentinized peridotites acquire water and fluid-mobile elements during ocean floor hydration and through exchange with sediment-equilibrated fluids in the early subduction stages. Subsequent antigorite devolatilization at subarc depths delivers aqueous fluids to the mantle wedge that can be prominently enriched in sediment-derived components, potentially triggering arc magmatism without the need of concomitant dehydration/melting of metasediments or altered oceanic crust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diamonds of eclogitic assemblages are dominant in the placer diamond deposits of the northeastern Siberian platform. In this study we present new trace elements and stable isotopes (δ13C and δ18O) data for alluvial diamonds and their garnet inclusions from this locality. Cr-rich garnets of peridotitic affinity in the studied diamonds have a narrow range of δ18O values from 5.7‰ to 6.2‰, which is largely overlapping with the accepted mantle range. This narrow range suggests that the garnet inclusions showing different REE patterns and little variations in oxygen isotopes may have formed by different processes involving fluid/melts that, however, were in oxygen isotopic equilibrium with the mantle. The trace element composition of the eclogitic garnet inclusions supports a crustal origin for at least the high-Ca garnets, which show flat HREE patterns and in some cases a positive Eu-anomaly. High-Ca eclogitic garnets generally show heavier oxygen isotope compositions (δ18O 6.5–9.6‰) than what is observed in low-Ca garnets (δ18O 5.7–7.4‰). The variability in oxygen isotopes and trace elements is suggested to be inherited from contrasting crustal protoliths. The relationship between the high δ18O values of inclusions and the low δ13C values of the host diamonds implies that the high-Ca garnet inclusions were derived from intensely hydrated (e.g., δ18O > 7‰) and typically oxidised basaltic rock close to the seawater interface, and that the carbon for diamonds was closely associated with this protolith.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reinforcement inclusions have been advocated to alleviate wear, compaction, and unstable surfaces in sports fields, but little research on the effects of these materials has been conducted in the USA. Experiments were established on a native silt loam and a sand rootzone matrix, seeded with a Kentucky bluegrass (Poa pratensis L.) blend, at the Joseph Troll Turf Research Center, University of Massachusetts, Amherst, USA to determine the effects of reinforcement inclusions on wear, surface hardness, traction, ball roll, ball bounce resilience, water infiltration rate, soil bulk density, air porosity, total porosity, and root weights. Three types of reinforcement inclusions (Sportgrass, Netlon, Turfgrids) were tested along with a non-reinforced control in a three year study. The treatments were set out in a randomized complete block design with four replications in both soils. No inclusion provided less wear or greater infiltration or air-filled porosity relative to the control. Reinforcement inclusions showed significant differences, however, in surface hardness, traction, and ball roll relative to the control, although this varied with the time of year. Infiltration rates, airfilled porosity, total pore space, bulk density, hardness, traction, ball roll, and ball rebound were greater on the sand rootzone than on the silt loam. Significant correlations were present between soil bulk density, surface hardness, traction, and ball roll. Based on our study, the use of reinforcement inclusions to provide better wear tolerance for sand or native soil athletic fields is not warranted. Certain playing surface characteristics, however, may be slightly improved with the use of reinforcement inclusions. The use of sands for sports surfaces is justified based upon the improvement in playing quality characteristics and soil physical properties important to a good playing surface.