958 resultados para IN-UTERO EXPOSURE
Resumo:
Ethanol acts as a teratogen in developing fetuses causing abnormalities of the brain, heart, craniofacial bones, and limb skeletal elements. To assess whether some teratogenic actions of ethanol might occur via dysregulation of msx2 expression, we examined msx2 expression in developing mouse embryos exposed to ethanol on embryonic day (E) 8 of gestation and subjected to whole mount in situ hybridization on E11–11.5 using a riboprobe for mouse msx2. Control mice exhibited expression of msx2 in developing brain, the developing limb buds and apical ectodermal ridge, the lateral and nasal processes, olfactory pit, palatal shelf of the maxilla, the eye, the lens of the eye, otic vesicle, prevertebral bodies (notochord), and endocardial cushion. Embryos exposed to ethanol in utero were significantly smaller than their normal counterparts and did not exhibit expression of msx2 in any structures. Similarly, msx2 expression, as determined by reverse transcription–PCR and Northern blot hybridization, was reduced ≈40–50% in fetal mouse calvarial osteoblastic cells exposed to 1% ethanol for 48 hr while alkaline phosphatase was increased by 2-fold and bone morphogenetic protein showed essentially no change. Transcriptional activity of the msx2 promoter was specifically suppressed by alcohol in MC3T3-E1 osteoblasts. Taken together, these data demonstrate that fetal alcohol exposure decreases msx2 expression, a known regulator of osteoblast and myoblast differentiation, and suggest that one of the “putative” mechanisms for fetal alcohol syndrome is the inhibition of msx2 expression during key developmental periods leading to developmental retardation, altered craniofacial morphogenesis, and cardiac defects.
Resumo:
A number of fatty acid ethyl esters (FAEEs) have recently been detected in meconium samples. Several of these FAEEs have been evaluated as possible biomarkers for in utero ethanol exposure. In the present study, a method was optimized and validated for the simultaneous determination of eight FAEEs (ethyl laurate, ethyl myristate, ethyl palmitate, ethyl palmitoleate, ethyl stearate, ethyl oleate, ethyl linoleate and ethyl arachidonate) in meconium samples. FAEEs were extracted by headspace solid-phase microextraction. Analyte detection and quantification were carried out using GC-MS operated in chemical ionization mode. The corresponding D5-ethyl esters were synthesized and used as internal standards. The LOQ and LOD for each analyte were <150 and <100 ng/g, respectively. The method showed good linearity (r(2)>0.98) in the concentration range studied (LOQ -2000 ng/g). The intra- and interday imprecision, given by the RSD of the method, was lower than 15% for all FAEEs studied. The validated method was applied to 63 authentic specimens. FAEEs could be detected in alcohol-exposed newborns ( >600 ng/g cumulative concentration). Interestingly, FAEEs could also be detected in some non-exposed newborns, although the concentrations were much lower than those measured in exposed cases.
Resumo:
Rationale- Chronic exposure to air pollution has been associated with adverse effects on children`s lung growth. Objectives: We analyzed the effects of chronic exposure to urban levels of particulate matter (PM) on selected phases of mouse lung development. Methods: The exposure occurred in two open-top chambers (filtered and nonfiltered) placed 20 m from a street with heavy traffic in Sao Paulo, 24 hours/day for 8 months. There was a significant reduction of the levels of PM(2.5) inside the filtered chamber (filtered = 2.9 +/- 3.0 mu g/m(3), nonfiltered = 16.8 +/- 8.3 mu g/m(3); P = 0.001). At this exposure site, vehicular sources are the major components of PM(2.5) (PM <= 2.5 mu m). Exposure of the parental generation in the two chambers occurred from the 10th to the 120th days of life. After mating and birth of offspring, a crossover of mothers and pups occurred within the chambers, resulting in four groups of pups: nonexposed, prenatal, postnatal, and pre+postnatal. Offspring were killed at the age of 15 (n = 42) and 90 (n = 35) days; lungs were analyzed by morphometry for surface to volume ratio (as an estimator of alveolization). Pressure-volume curves were performed in the older groups, using a 20-ml plethysmograph. Measurements and Main Results: Mice exposed to PM(2.5) pre+postnatally presented a smaller surface to volume ratio when compared with nonexposed animals (P = 0.036). The pre+postnatal group presented reduced inspiratory and expiratory volumes at higher levels of transpulmonary pressure (P = 0.001). There were no differences among prenatal and postnatal exposure and nonexposed animals. Conclusions: Our data provide anatomical and functional support to the concept that chronic exposure to urban PM affects lung growth.
Resumo:
Ipomoea cameo Jacq. ssp. fistulosa (Mart. Ex Choisy; Convolvulaceae; I. cameo) possesses a toxic component: an indolizidine alkaloid swainsonine (SW) that has immunomodulatory effects due to its inhibition of glycoprotein metabolism. It is also known that SW is excreted into both the amniotic fluid and milk of female rats exposed to I. cameo. Thus, the aim of this study was to determine whether SW exposure, either in utero or from the milk of dams treated with I. cornea, modulates offspring immune function into adulthood. In addition, adult (70 days old) and juvenile rats (21 days old) were exposed to I. cameo in order to evaluate several other immune parameters: lymphoid organs relative weight and cellularity, humoral and cellular immune responses. Offspring exposed to I. cornea during lactation developed rheumatoid arthritis (RA) in adulthood after an immunogenic challenge. In addition, both adult and juvenile rats exposed to I. cameo showed discrepancies in several immune parameters, but did not exhibit any decrease in humoral immune response, which was enhanced at both ages. These findings indicate that SW modulates immune function in adult rats exposed to SW during lactation and in juvenile and adult rats exposed to SW as juveniles and adults, respectively.
Resumo:
In the management of solid waste, pollutants over a wide range are released with different routes of exposure for workers. The potential for synergism among the pollutants raises concerns about potential adverse health effects, and there are still many uncertainties involved in exposure assessment. In this study, conventional (culture-based) and molecular real-time polymerase chain reaction (RTPCR) methodologies were used to assess fungal air contamination in a waste-sorting plant which focused on the presence of three potential pathogenic/toxigenic fungal species: Aspergillus flavus, A. fumigatus, and Stachybotrys chartarum. In addition, microbial volatile organic compounds (MVOC) were measured by photoionization detection. For all analysis, samplings were performed at five different workstations inside the facilities and also outdoors as a reference. Penicillium sp. were the most common species found at all plant locations. Pathogenic/toxigenic species (A. fumigatus and S. chartarum) were detected at two different workstations by RTPCR but not by culture-based techniques. MVOC concentration indoors ranged between 0 and 8.9 ppm (average 5.3 ± 3.16 ppm). Our results illustrated the advantage of combining both conventional and molecular methodologies in fungal exposure assessment. Together with MVOC analyses in indoor air, data obtained allow for a more precise evaluation of potential health risks associated with bioaerosol exposure. Consequently, with this knowledge, strategies may be developed for effective protection of the workers.
Resumo:
OBJECTIVE: To assess the feasibility of HIV rapid testing for pregnant women at maternity hospital admission and of subsequent interventions to reduce perinatal HIV transmission. METHODS: Study based on a convenience sample of women unaware of their HIV serostatus when they were admitted to delivery in public maternity hospitals in Rio de Janeiro and Porto Alegre, Brazil, between March 2000 and April 2002. Women were counseled and tested using the Determine HIV1/2 Rapid Test. HIV infection was confirmed using the Brazilian algorithm for HIV infection diagnosis. In utero transmission of HIV was determined using HIV-DNA-PCR. There were performed descriptive analyses of sociodemographic data, number of previous pregnancies and abortions, number of prenatal care visits, timing of HIV testing, HIV rapid test result, neonatal and mother-to-child transmission interventions, by city studied. RESULTS: HIV prevalence in women was 6.5% (N=1,439) in Porto Alegre and 1.3% (N=3.778) in Rio de Janeiro. In Porto Alegre most of women were tested during labor (88.7%), while in Rio de Janeiro most were tested in the postpartum (67.5%). One hundred and forty-four infants were born to 143 HIV-infected women. All newborns but one in each city received at least prophylaxis with oral zidovudine. It was possible to completely avoid newborn exposure to breast milk in 96.8% and 51.1% of the cases in Porto Alegre and Rio de Janeiro, respectively. Injectable intravenous zidovudine was administered during labor to 68.8% and 27.7% newborns in Porto Alegre and Rio de Janeiro, respectively. Among those from whom blood samples were collected within 48 hours of birth, in utero transmission of HIV was confirmed in 4 cases in Rio de Janeiro (4/47) and 6 cases in Porto Alegre (6/79). CONCLUSIONS: The strategy proved feasible in maternity hospitals in Rio de Janeiro and Porto Alegre. Efforts must be taken to maximize HIV testing during labor. There is a need of strong social support to provide this population access to health care services after hospital discharge.
Resumo:
Clear cell adenocarcinoma of the cervix is a rare tumor, classically related with in utero diethylstilbestrol (DES) exposure. The authors report a rare case of clear cell adenocarcinoma of the cervix in a 21-yearold woman who had no history of in utero DES exposure, presenting with intermittent vaginal bleeding. It stresses the relevance to always clarify the etiology of abnormal genital bleeding and consider the possibility of cervicovaginal tumors.
Resumo:
Objective Biomonitoring of solvents using the unchanged substance in urine as exposure indicator is still relatively scarce due to some discrepancies between the results reported in the literature. Based on the assessment of toluene exposure, the aim of this work was to evaluate the effects of some steps likely to bias the results and to measure urinary toluene both in volunteers experimentally exposed and in workers of rotogravure factories. Methods Static headspace was used for toluene analysis. o-Cresol was also measured for comparison. Urine collection, storage and conservation conditions were studied to evaluate possible loss or contamination of toluene in controlled situations applied to six volunteers in an exposure chamber according to four scenarios with exposure at stable levels from 10 to 50 ppm. Kinetics of elimination of toluene were determined over 24 h. A field study was then carried out in a total of 29 workers from two rotogravure printing facilities. Results Potential contamination during urine collection in the field is confirmed to be a real problem but technical precautions for sampling, storage and analysis can be easily followed to control the situation. In the volunteers at rest, urinary toluene showed a rapid increase after 2 h with a steady level after about 3 h. At 47.1 ppm the mean cumulated excretion was about 0.005% of the amount of the toluene ventilated. Correlation between the toluene levels in air and in end of exposure urinary sample was excellent (r = 0.965). In the field study, the median personal exposure to toluene was 32 ppm (range 3.6-148). According to the correlations between environmental and biological monitoring data, the post-shift urinary toluene (r = 0.921) and o-cresol (r = 0.873) concentrations were, respectively, 75.6 mu g/l and 0.76 mg/g creatinine for 50 ppm toluene personal exposure. The corresponding urinary toluene concentration before the next shift was 11 mu g/l (r = 0.883). Conclusion Urinary toluene was shown once more time a very interesting surrogate to o-cresol and could be recommended as a biomarker of choice for solvent exposure. [Authors]
Resumo:
Cytotoxic CD8 T cells exert their antiviral and antitumor activity primarily through the secretion of cytotoxic granules. Degranulation activity and cytotoxic granules (perforin plus granzymes) generally define CD8 T cells with cytotoxic function. In this study, we have investigated the expression of granzyme K (GrmK) in comparison to that of GrmA, GrmB, and perforin. The expression of the cytotoxic granules was assessed in virus-specific CD8 T cells specific to influenza virus, Epstein-Barr virus (EBV), cytomegalovirus (CMV), or human immunodeficiency virus type 1 (HIV-1). We observed a dichotomy between GrmK and perforin expression in virus-specific CD8 T cells. The profile in influenza virus-specific CD8 T cells was perforin(-) GrmB(-) GrmA(+/-) GrmK(+); in CMV-specific cells, it was perforin(+) GrmB(+) GrmA(+) GrmK(-/+); and in EBV- and HIV-1-specific cells, it was perforin(-/+) GrmB(+) GrmA(+) GrmK(+). On the basis of the delineation of memory and effector CD8 T cells with CD45RA and CD127, the GrmK(+) profile was associated with early-stage memory CD8 T-cell differentiation, the perforin(+) GrmB(+) GrmA(+) profile with advanced-stage differentiation, and the GrmB(+) GrmA(+) Grmk(+) profile with intermediate-stage differentiation. Furthermore, perforin and GrmB but not GrmA and GrmK correlated with cytotoxic activity. Finally, changes in antigen exposure in vitro and in vivo during primary HIV-1 infection and vaccination modulated cytotoxic granule profiles. These results advance our understanding of the relationship between distinct profiles of cytotoxic granules in memory CD8 T cells and function, differentiation stage, and antigen exposure.
Resumo:
The introduction of engineered nanostructured materials into a rapidly increasing number of industrial and consumer products will result in enhanced exposure to engineered nanoparticles. Workplace exposure has been identified as the most likely source of uncontrolled inhalation of engineered aerosolized nanoparticles, but release of engineered nanoparticles may occur at any stage of the lifecycle of (consumer) products. The dynamic development of nanomaterials with possibly unknown toxicological effects poses a challenge for the assessment of nanoparticle induced toxicity and safety.In this consensus document from a workshop on in-vitro cell systems for nanoparticle toxicity testing11Workshop on 'In-Vitro Exposure Studies for Toxicity Testing of Engineered Nanoparticles' sponsored by the Association for Aerosol Research (GAeF), 5-6 September 2009, Karlsruhe, Germany. an overview is given of the main issues concerning exposure to airborne nanoparticles, lung physiology, biological mechanisms of (adverse) action, in-vitro cell exposure systems, realistic tissue doses, risk assessment and social aspects of nanotechnology. The workshop participants recognized the large potential of in-vitro cell exposure systems for reliable, high-throughput screening of nanoparticle toxicity. For the investigation of lung toxicity, a strong preference was expressed for air-liquid interface (ALI) cell exposure systems (rather than submerged cell exposure systems) as they more closely resemble in-vivo conditions in the lungs and they allow for unaltered and dosimetrically accurate delivery of aerosolized nanoparticles to the cells. An important aspect, which is frequently overlooked, is the comparison of typically used in-vitro dose levels with realistic in-vivo nanoparticle doses in the lung. If we consider average ambient urban exposure and occupational exposure at 5mg/m3 (maximum level allowed by Occupational Safety and Health Administration (OSHA)) as the boundaries of human exposure, the corresponding upper-limit range of nanoparticle flux delivered to the lung tissue is 3×10-5-5×10-3μg/h/cm2 of lung tissue and 2-300particles/h/(epithelial) cell. This range can be easily matched and even exceeded by almost all currently available cell exposure systems.The consensus statement includes a set of recommendations for conducting in-vitro cell exposure studies with pulmonary cell systems and identifies urgent needs for future development. As these issues are crucial for the introduction of safe nanomaterials into the marketplace and the living environment, they deserve more attention and more interaction between biologists and aerosol scientists. The members of the workshop believe that further advances in in-vitro cell exposure studies would be greatly facilitated by a more active role of the aerosol scientists. The technical know-how for developing and running ALI in-vitro exposure systems is available in the aerosol community and at the same time biologists/toxicologists are required for proper assessment of the biological impact of nanoparticles.
Resumo:
BACKGROUND. A growing body of research suggests that prenatal exposure to air pollution may be harmful to fetal development. We assessed the association between exposure to air pollution during pregnancy and anthropometric measures at birth in four areas within the Spanish Children's Health and Environment (INMA) mother and child cohort study. METHODS. Exposure to ambient nitrogen dioxide (NO2) and benzene was estimated for the residence of each woman (n = 2,337) for each trimester and for the entire pregnancy. Outcomes included birth weight, length, and head circumference. The association between residential outdoor air pollution exposure and birth outcomes was assessed with linear regression models controlled for potential confounders. We also performed sensitivity analyses for the subset of women who spent more time at home during pregnancy. Finally, we performed a combined analysis with meta-analysis techniques. RESULTS. In the combined analysis, an increase of 10 µg/m3 in NO2 exposure during pregnancy was associated with a decrease in birth length of -0.9 mm [95% confidence interval (CI), -1.8 to -0.1 mm]. For the subset of women who spent ≥ 15 hr/day at home, the association was stronger (-0.16 mm; 95% CI, -0.27 to -0.04). For this same subset of women, a reduction of 22 g in birth weight was associated with each 10-µg/m3 increase in NO2 exposure in the second trimester (95% CI, -45.3 to 1.9). We observed no significant relationship between benzene levels and birth outcomes. CONCLUSIONS. NO2 exposure was associated with reductions in both length and weight at birth. This association was clearer for the subset of women who spent more time at home.
Resumo:
Abstract : Breast cancer incidence rates have increased over the past hundred years, in particular, in Western industrial countries and they continue to rise worldwide. Breast cancer risk has been linked to life exposure to endogenous and exogenous estrogens, and there is increasing concern that exposure to endocrine disruptors which are increasingly accumulating in our environment may also have a role. Using the mouse as model, I have analyzed the physiological role of estrogen signaling in mammary gland development. I have shown that estrogen signaling through the estrogen receptor alpha (ERα) in the mammary epithelium is required for ductal morphogenesis during puberty. Moreover, I have demonstrated that estrogens induce proliferation of mammary epithelial cells through a paracrine mechanism. The presence of estrogen signaling is essential cell intrinsically via ERα or ERβ for the terminal differentiation into milk secreting cells during pregnancy. Furthermore, I have examined how perinatal exposure to the estrogenic plasticizer bisphenol A (BPA) found ubiquitously in consumer goods such as baby bottles formula and beverage containers affects the normal mammary gland development and possibly predispose the mammary gland to tumorigenesis. I have found that C57b16 mice that were exposed, via their drinking water, to several BPA doses ranging from 0.025µg/kg/day to 250µg/kg/day exhibits delayed terminal end bud formation and consequently the ductal outgrowth. Later in life, the mice that were exposed in utero to BPA displayed an increased number of mammary epithelial cells. Acute exposure of 3-week-old mice to BPA can alter gene expression levels of an important estrogen target gene, amphiregulin. Taken together these data are compatible with a scenario in which perinatal BPA exposure may alter mammary gland development by affecting developmental signaling pathways. Résumé : Les taux d'incidence des cancers du sein ont augmenté au cours des cent dernières années en particulier dans les pays industriels occidentaux et ils continuent d'augmenter dans le monde entier. Le risque du cancer du sein a été corrélé à l'exposition au cours de la vie aux oestrogènes endogènes et exogènes. Il y a une préoccupation croissante concernant l'exposition aux perturbateurs endocriniens qui ne cessent de s'accumulent dans notre environnement et qui peuvent également avoir un rôle dans l'augmentation des cancers du sein. En utilisant le modèle de souris, j'ai analysé le rôle physiologique de la voie de signalisation à l'oestrogène dans le développement mammaire. J'ai prouvé que l'oestrogène par l'intermédiaire de son récepteur alpha (ERα) est indispensable dans l'épithélium pour la morphogénèse du système canalaire pendant la puberté. De plus, j'ai démontré que les oestrogènes induisent la prolifération des cellules épithéliales mammaires par un mécanisme paracrine. La présence de la voie de signalisation à l'oestrogène est essentielle de manière intrinsèque à la cellule par l'intermédiaire d'ERα ou ERβ pour la différentiation terminale des cellules épithéliales en cellules sécrétrices de lait pendant la grossesse. En outre, j'ai examiné comment l'exposition périnatale au bisphénol A (BPA), un plastifiant présentant des propriétés ostrogéniques et omniprésent dans divers produits d'usage courant tels que les biberons des bébés et les récipients en plastique, affecte le développement de la glande mammaire et prédispose probablement celle-ci à la tumorigénèse. J'ai constaté que l'exposition périnatale à BPA retarde la formation des bourgeons terminaux et par conséquent la croissance du système canalaire. Plus tard dans la vie, les souris qui ont été exposées dans l'utérus au BPA ont montré un plus grand nombre de cellules épithéliales mammaires. L'exposition aiguë de souris âgées de 3 semaines au BPA perturbe le niveau d'expression d'un gène cible important de l'oestrogène, l'amphiregulin. Ces données sont compatibles avec un scénario dans lequel l'exposition périnatale au BPA peut changer le développement de la glande mammaire en affectant des voies de signalisation développementales.
Resumo:
Background: There is growing evidence that traffic-related air pollution reduces birth weight. Improving exposure assessment is a key issue to advance in this research area.Objective: We investigated the effect of prenatal exposure to traffic-related air pollution via geographic information system (GIS) models on birth weight in 570 newborns from the INMA (Environment and Childhood) Sabadell cohort.Methods: We estimated pregnancy and trimester-specific exposures to nitrogen dioxide and aromatic hydrocarbons [benzene, toluene, ethylbenzene, m/p-xylene, and o-xylene (BTEX)] by using temporally adjusted land-use regression (LUR) models. We built models for NO2 and BTEX using four and three 1-week measurement campaigns, respectively, at 57 locations. We assessed the relationship between prenatal air pollution exposure and birth weight with linear regression models. We performed sensitivity analyses considering time spent at home and time spent in nonresidential outdoor environments during pregnancy.Results: In the overall cohort, neither NO2 nor BTEX exposure was significantly associated with birth weight in any of the exposure periods. When considering only women who spent < 2 hr/day in nonresidential outdoor environments, the estimated reductions in birth weight associated with an interquartile range increase in BTEX exposure levels were 77 g [95% confidence interval (CI), 7–146 g] and 102 g (95% CI, 28–176 g) for exposures during the whole pregnancy and the second trimester, respectively. The effects of NO2 exposure were less clear in this subset.Conclusions: The association of BTEX with reduced birth weight underscores the negative role of vehicle exhaust pollutants in reproductive health. Time–activity patterns during pregnancy complement GIS-based models in exposure assessment.
Resumo:
Background: Awareness of the negative effects of smoking on children's health prompted a decrease in the self-reporting of parental tobacco use in periodic surveys from most industrialized countries. Our aim is to assess changes between ETS exposure at the end of pregnancy and at 4 years of age determined by the parents' self-report and measurement of cotinine in age related biological matrices.Methods: The prospective birth cohort included 487 infants from Barcelona city (Spain). Mothers were asked about maternal and household smoking habit. Cord serum and children's urinary cotinine were analyzed in duplicate using a double antibody radioimmunoassay. Results: At 4 years of age, the median urinary cotinine level in children increased 1.4 or 3.5 times when father or mother smoked, respectively. Cotinine levels in children's urine statistically differentiated children from smoking mothers (Geometric Mean (GM) 19.7 ng/ml; 95% CI 16.83–23.01) and exposed homes (GM 7.1 ng/ml; 95% CI 5.61–8.99) compared with non-exposed homes (GM 4.5 ng/ml; 95% CI 3.71–5.48). Maternal self-reported ETS exposure in homes declined in the four year span between the two time periods from 42.2% to 31.0% (p < 0.01). Nevertheless, most of the children considered non-exposed by their mothers had detectable levels of cotinine above 1 ng/mL in their urine.Conclusion: We concluded that cotinine levels determined in cord blood and urine, respectively, were useful for categorizing the children exposed to smoking and showed that a certain increase in ETS exposure during the 4-year follow-up period occurred.
Resumo:
BACKGROUND: Adverse events in utero may predispose to cardiovascular disease in adulthood. The underlying mechanisms are unknown. During preeclampsia, vasculotoxic factors are released into the maternal circulation by the diseased placenta. We speculated that these factors pass the placental barrier and leave a defect in the circulation of the offspring that predisposes to a pathological response later in life. The hypoxia associated with high-altitude exposure is expected to facilitate the detection of this problem. METHODS AND RESULTS: We assessed pulmonary artery pressure (by Doppler echocardiography) and flow-mediated dilation of the brachial artery in 48 offspring of women with preeclampsia and 90 offspring of women with normal pregnancies born and permanently living at the same high-altitude location (3600 m). Pulmonary artery pressure was roughly 30% higher (mean+/-SD, 32.1+/-5.6 versus 25.3+/-4.7 mm Hg; P<0.001) and flow-mediated dilation was 30% smaller (6.3+/-1.2% versus 8.3+/-1.4%; P<0.0001) in offspring of mothers with preeclampsia than in control subjects. A strong inverse relationship existed between flow-mediated dilation and pulmonary artery pressure (r=-0.61, P<0.001). The vascular dysfunction was related to preeclampsia itself because siblings of offspring of mothers with preeclampsia who were born after a normal pregnancy had normal vascular function. Augmented oxidative stress may represent an underlying mechanism because thiobarbituric acid-reactive substances plasma concentration was increased in offspring of mothers with preeclampsia. CONCLUSIONS: Preeclampsia leaves a persistent defect in the systemic and the pulmonary circulation of the offspring. This defect predisposes to exaggerated hypoxic pulmonary hypertension already during childhood and may contribute to premature cardiovascular disease in the systemic circulation later in life.