952 resultados para IMAGING HYDROGEN-SULFIDE
Resumo:
Herein, we demonstrate that highly sensitive conductometric gas nanosensors for H(2)S can be synthesized by electrodepositing gold nanoparticles on single-walled carbon nanotube (SWNT) networks. Adjusting the electrodeposition conditions allowed for tuning of the size and number of gold nanoparticles deposited. The best H(2)S sensing performance was obtained with discrete gold nanodeposits rather than continuous nanowires. The gas nanosensors could sense H(2)S in air at room temperature with a 3 ppb limit of detection. The sensors were reversible, and increasing the bias voltage reduced the sensor recovery time, probably by local Joule heating. The sensing mechanism is believed to be based on the modulation of the conduction path across the nanotubes emanating from the modulation of electron exchange between the gold and carbon nanotube defect sites when exposed to H(2)S.
Resumo:
Biogas is a mixture of methane and other gases. In its crude state, it contains carbon dioxide (CO2) that reduces its energy efficiency and hydrogen sulfide (H2S) that is toxic and highly corrosive. Because chemical methods of removal are expensive and environmentally hazardous, this project investigated an algal-based system to remove CO2 from biogas. An anaerobic digester was used to mimic landfill biogas. Iron oxide and an alkaline spray were used to remove H2S and CO2 respectively. The CO2-laden alkali solution was added to a helical photobioreactor where the algae metabolized the dissolved CO2 to generate algal biomass. Although technical issues prevented testing of the complete system for functionality, cost analysis was completed and showed that the system, in its current state, is not economically feasible. However, modifications may reduce operation costs.
Resumo:
Eutrophication, coupled with loss of herbivory due to habitat degradation and overharvesting, has increased the frequency and severity of macroalgal blooms worldwide. Macroalgal blooms interfere with human activities in coastal areas, and sometimes necessitate costly algal removal programs. They also have many detrimental effects on marine and estuarine ecosystems, including induction of hypoxia, release of toxic hydrogen sulfide into the sediments and atmosphere, and the loss of ecologically and economically important species. However, macroalgal blooms can also increase habitat complexity, provide organisms with food and shelter, and reduce other problems associated with eutrophication. These contrasting effects make their overall ecological impacts unclear. We conducted a systematic review and meta-analysis to estimate the overall effects of macroalgal blooms on several key measures of ecosystem structure and functioning in marine ecosystems. We also evaluated some of the ecological and methodological factors that might explain the highly variable effects observed in different studies. Averaged across all studies, macroalgal blooms had negative effects on the abundance and species richness of marine organisms, but blooms by different algal taxa had different consequences, ranging from strong negative to strong positive effects. Blooms' effects on species richness also depended on the habitat where they occurred, with the strongest negative effects seen in sandy or muddy subtidal habitats and in the rocky intertidal. Invertebrate communities also appeared to be particularly sensitive to blooms, suffering reductions in their abundance, species richness, and diversity. The total net primary productivity, gross primary productivity, and respiration of benthic ecosystems were higher during macroalgal blooms, but blooms had negative effects on the productivity and respiration of other organisms. These results suggest that, in addition to their direct social and economic costs, macroalgal blooms have ecological effects that may alter their capacity to deliver important ecosystem services.
Resumo:
The sulfur tolerance of a barium-containing NOx storage/reduction trap was investigated using infrared analysis. It was confirmed that barium carbonate could be replaced by barium sulfate by reaction with low concentrations of sulfur dioxide (50 ppm) in the presence of large concentrations of carbon dioxide (10%) at temperatures up to 700 degreesC. These sulfates could at least be partially removed by switching to hydrogen-rich conditions at elevated temperatures. Thermodynamic calculations were used to evaluate the effects of gas composition and temperature on the various reactions of barium sulfate and carbonate under oxidizing and reducing conditions. These calculations clearly showed that if, under a hydrogen-rich atmosphere, carbon dioxide is included as a reactant and barium carbonate as a product then barium sulfate can be removed by reaction with carbon dioxide at a much lower temperature than is possible by decomposition to barium oxide. It was also found that if hydrogen sulfide was included as a product of decomposition of barium sulfate instead of sulfur dioxide then the temperature of reaction could be significantly lowered. Similar calculations were conducted using a selection of other alkaline-earth and alkali metals. In this case calculations were simulated in a gas mixture containing carbon monoxide, hydrogen and carbon dioxide with partial pressures similar to those encountered in real exhausts during switches to rich conditions. The results indicated that there are metals such as lithium and strontium with less stable sulfates than barium, which may also possess sufficient NOx storage capacity to give sulfur-tolerant NOx traps.
Resumo:
We report a simple and facile methodology for constructing Pt (6.3 mm x 50 mu m) and Cu (6.3 mm x 30 mu m) annular microband electrodes for use in room temperature ionic liquids (RTILs) and propose their use for amperometric gas sensing. The suitability of microband electrodes for use in electrochemical analysis was examined in experiments on two systems. The first system studied to validate the electrochemical responses of the annular microband electrode was decamethylferrocene (DmFc), as a stable internal reference probe commonly used in ionic liquids, in [Pmim][NTf2], where the diffusion coefficients of DmFc and DmFc(+) and the standard electron rate constant for the DmFc/DmFc(+) couple were determined through fitting chronoamperometric and cyclic voltammetric responses with relevant simulations. These values are independently compared with those collected from a commercially available Pt microdisc electrode with excellent agreement. The second system focuses on O-2 reduction in [Pmim][NTf2], which is used as a model for gas sensing. The diffusion coefficients of O-2 and O-2(-) and the electron transfer rate constant were again obtained using chronoamperometry and cyclic voltammetry, along with simulations. Results determined from the microbands are again consistent to those evaluated from the Pt microdisc electrode when compared these results from home-made microband and commercially available microdisc electrodes. These observations indicate that the fabricated annular microband electrodes are suitable for quantitative measurements. Further the successful use of the Cu electrodes in the O-2 system suggests a cheap disposable sensor for gas detection. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The methane solubility in five pure electrolyte solvents and one binary solvent mixture for lithium ion batteries – such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC) and the (50:50 wt%) mixture of EC:DMC was studied experimentally at pressures close to atmospheric and as a function of temperature between (280 and 343) K by using an isochoric saturation technique. The effect of the selected anions of a lithium salt LiX (X = hexafluorophosphate,
<img height="16" border="0" style="vertical-align:bottom" width="27" alt="View the MathML source" title="View the MathML source" src="http://origin-ars.els-cdn.com/content/image/1-s2.0-S0021961414002146-si1.gif">PF6-; tris(pentafluoroethane)trifluorurophosphate, FAP−; bis(trifluoromethylsulfonyl)imide, TFSI−) on the methane solubility in electrolytes for lithium ion batteries was then investigated using a model electrolyte based on the binary mixture of EC:DMC (50:50 wt%) + 1 mol · dm−3 of lithium salt in the same temperature and pressure ranges. Based on experimental solubility data, the Henry’s law constant of the methane in these solutions were then deduced and compared together and with those predicted by using COSMO-RS methodology within COSMOthermX software. From this study, it appears that the methane solubility in each pure solvent decreases with the temperature and increases in the following order: EC < PC < EC:EMC (50:50 wt%) < DMC < EMC < DEC, showing that this increases with the van der Walls force in solution. Additionally, in all investigated EC:DMC (50:50 wt%) + 1 mol · dm−3 of lithium salt electrolytes, the methane solubility decreases also with the temperature and the methane solubility is higher in the electrolyte containing the LiFAP salt, followed by that based on the LiTFSI one. From the variation of the Henry’s law constants with the temperature, the partial molar thermodynamic functions of solvation, such as the standard Gibbs free energy, the enthalpy, and the entropy where then calculated, as well as the mixing enthalpy of the solvent with methane in its hypothetical liquid state. Finally, the effect of the gas structure on their solubility in selected solutions was discussed by comparing methane solubility data reported in the present work with carbon dioxide solubility data available in the same solvents or mixtures to discern the more harmful gas generated during the degradation of the electrolyte, which limits the battery lifetime.
Resumo:
Introduction: The 'scaly-foot gastropod' (Chrysomallon squamiferum Chen et al., 2015) from deep-sea hydrothermal vent ecosystems of the Indian Ocean is an active mobile gastropod occurring in locally high densities, and it is distinctive for the dermal scales covering the exterior surface of its foot. These iron-sulfide coated sclerites, and its nutritional dependence on endosymbiotic bacteria, are both noted as adaptations to the extreme environment in the flow of hydrogen sulfide. We present evidence for other adaptations of the 'scaly-foot gastropod' to life in an extreme environment, investigated through dissection and 3D tomographic reconstruction of the internal anatomy.
Results: Our anatomical investigations of juvenile and adult specimens reveal a large unganglionated nervous system, a simple and reduced digestive system, and that the animal is a simultaneous hermaphrodite. We show that Chrysomallon squamiferum relies on endosymbiotic bacteria throughout post-larval life. Of particular interest is the circulatory system: Chrysomallon has a very large ctenidium supported by extensive blood sinuses filled with haemocoel. The ctenidium provides oxygen for the host but the circulatory system is enlarged beyond the scope of other similar vent gastropods. At the posterior of the ctenidium is a remarkably large and well-developed heart. Based on the volume of the auricle and ventricle, the heart complex represents approximately 4 % of the body volume. This proportionally giant heart primarily sucks blood through the ctenidium and supplies the highly vascularised oesophageal gland. Thus we infer the elaborate cardiovascular system most likely evolved to oxygenate the endosymbionts in an oxygen poor environment and/or to supply hydrogen sulfide to the endosymbionts.
Conclusions: This study exemplifies how understanding the autecology of an organism can be enhanced by detailed investigation of internal anatomy. This gastropod is a large and active species that is abundant in its hydrothermal vent field ecosystem. Yet all of its remarkable features-protective dermal sclerites, circulatory system, high fecundity-can be viewed as adaptations beneficial to its endosymbiont microbes. We interpret these results to show that, as a result of specialisation to resolve energetic needs in an extreme chemosynthetic environment, this dramatic dragon-like species has become a carrying vessel for its bacteria.
Resumo:
Biogas from anaerobic digestion of sewage sludge is a renewable resource with high energy content, which is formed mainly of CH4 (40-75 vol.%) and CO2 (15-60 vol.%) Other components such as water (H2O, 5-10 vol.%) and trace amounts of hydrogen sulfide and siloxanes can also be present. A CH4-rich stream can be produced by removing the CO2 and other impurities so that the upgraded bio-methane can be injected into the natural gas grid or used as a vehicle fuel. The main objective of this paper is to develop a new modeling methodology to assess the technical and economic performance of biogas upgrading processes using ionic liquids which physically absorb CO2. Three different ionic liquids, namely the 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, 1-hexyl-3-methylimidazoliumbis[(trifluoromethyl)sulfonyl]imide and trihexyl(tetradecyl)phosphonium bis[(trifluoromethyl)sulfonyl]imide, are considered for CO2 capture in a pressure-swing regenerative absorption process. The simulation software Aspen Plus and Aspen Process Economic Analyzer is used to account for mass and energy balances as well as equipment cost. In all cases, the biogas upgrading plant consists of a multistage compressor for biogas compression, a packed absorption column for CO2 absorption, a flash evaporator for solvent regeneration, a centrifugal pump for solvent recirculation, a pre-absorber solvent cooler and a gas turbine for electricity recovery. The evaluated processes are compared in terms of energy efficiency, capital investment and bio-methane production costs. The overall plant efficiency ranges from 71-86 % whereas the bio-methane production cost ranges from £6.26-7.76 per GJ (LHV). A sensitivity analysis is also performed to determine how several technical and economic parameters affect the bio-methane production costs. The results of this study show that the simulation methodology developed can predict plant efficiencies and production costs of large scale CO2 capture processes using ionic liquids without having to rely on gas solubility experimental data.
Resumo:
The effects of swine wastewater-derived biogas on microalgae productivity were determined. Experiments were conducted in a closed photobioreactor containing digestate effluent as culturing media and biogas in the headspaceas source of CO2. Experiments were carried out under mixothrophic and autothrophic conditions. Results showed that autotrophic growth rate (0.6 d-1)was twofoldfaster than mixotrophic. Frequent reinjections of biogas containing up to 2,000 ppm of hydrogen sulfide was not inhibitory to microalgae growth. The rapid removal of H2S in the system suggests photobioreactors can be an interesting alternative to biogas purification. A model to estimate microalgae productivity based on the amount of available CO2, inorganic and organic carbon was developedand showed good data fit correlation (r²= 0.99).
Resumo:
Drug abuse is a widespread problem affecting both teenagers and adults. Nitrous oxide is becoming increasingly popular as an inhalation drug, causing harmful neurological and hematological effects. Some gas chromatography-mass spectrometry (GC-MS) methods for nitrous oxide measurement have been previously described. The main drawbacks of these methods include a lack of sensitivity for forensic applications; including an inability to quantitatively determine the concentration of gas present. The following study provides a validated method using HS-GC-MS which incorporates hydrogen sulfide as a suitable internal standard allowing the quantification of nitrous oxide. Upon analysis, sample and internal standard have similar retention times and are eluted quickly from the molecular sieve 5Å PLOT capillary column and the Porabond Q column therefore providing rapid data collection whilst preserving well defined peaks. After validation, the method has been applied to a real case of N2O intoxication indicating concentrations in a mono-intoxication.
Resumo:
The reaction of tris(pentafluorophenyl)phosphine [5] with the nucleophiles dimethyl formamide (DMF), hexamethylphosphoric triamide (HMPA), diethyl formamide (DEF), hexaethylphosphoric triamide (HEPA), hydrazine, N,N-dimethyl hydrazine (in presence and/or absence of KF), phenylhydrazine, ammonium hydroxide, formamide, aniline, sodium hydrogen sulfide, and hexaethylphosphorous triamide was investigated. The reaction of [5] with DMF and HMPA gave the same product, namely tris-[4-(N,N-dimethylamino)-2,3,5,6-tetrafluorophenyl]phosphine [12] but in higher yield in the case of HMPA. Compound (5] also reacted with DEF to give tris[4-(N,N-diethylamino)-2,3,5,6-tetrafluorophenyl] phosphine [14]. When [51 was treated with HEPA, it gave a mixture of bis(pentafluorophe~yl)-(N,N-diethylamino-tetrafluorophenyl)phosphine, pentafluorophenyl-bis-(N,N-diethylamino-tetrafluorophenyl)phosphine and tris (N,N-diethylamino-tetrafluorophenyl)phosphine. Treatment of [5] with aqueeus hydrazine solution in excess ethanol gave tris(4-hydrazo-2,3,4,6-tetrafluorophenyl)phosphine [1s1 in high yield while reaction with aqueous hydrazine led to C-P cleavage and production of tetrafluorophenyl hydrazine. With N,N-dimethyl hydrazine, [5] gave tris(4-N,N-dimethylhydrazine-2,3,5,6-tetrafluorophenyl) phosphine {20j. The latter could be obtained in higher yield and shorter reaction time, by the addition of KF. The reaction of compound {51 with phenylhydrazine in THF gave bis(pentafluorophe~yl)-4-S-phenylhydrazino- 2,3,5,6-tetrafluorophenyl phosphine [22] in low yield. Reaction of [5] with ammonium hydroxide in THF at high pressure in the presence of KF gave tris-~4-amino-2,3,5,6-tetrafluorophenyl)phosphine [25]. Similarly, formamide led to a mixture of (C6F4NHZ)3P, (C6F4NHZ)ZPC6FS, (C6F4NHZ)ZPC6F4NHCHO, and C6F4NHZP(C6Fs)(C6F4NHCHO). When [5] was treated with aniline, a mixture of mono-, di-, and tri-substituted products was obtained. Sodium hydrogen sulfide in ethylene glycol/ pyridine led to C-P cleavage and the isolation of pentafluorobenzene and tetrafluorothiophenol. Reaction of [5] and its oxide [35] with different alkoxides in the corresponding alcohols led mainly to C-P bond cleavage products, with the exception of one case where sodium methoxide was used in ether, and which led to tris-(4-methoxy-2,3,9,6-tetrafluorophenyl)phosphine [37]. On the basis of various spectroscopic data, it was concluded that the para position in compound [5] was generally the favoured site of attack.
Resumo:
The 2,4,6-triphenylthiapyrylium ion has been obtained imprisoned inside the supercages of the tridirectional, large pore zeolites Y and beta via ship-in-a-bottle synthesis from chalcone and acetophenone in the presence of hydrogen sulfide. The resulting solids are efficient and robust photocatalysts that are able to degrade phenol and aniline in water with a higher efficiency than the P-25 TiO2 standard. Preliminary tests have shown that these encapsulated dye materials are also efficient photocatalysts for the oxidative degradation of malodorous sulfurcontaining molecules.
Resumo:
En el proceso de extracción de petróleo (crudo) deben realizarse tratamientos físicos y químicos en estaciones de recolección del hidrocarburo con el fin de garantizar su calidad antes de su entrega para el transporte y comercialización. Para la realización de esta actividad el personal operativo requerido (operadores) debe realizar diferentes actividades, tales como ronda operacional, verificación de sistemas de almacenamiento del crudo, agua residual del proceso e insumos químicos utilizados en su tratamiento y manipulación de facilidades en las estaciones de recolección, entre otras. Como resultados de las actividades rutinarias los operadores están expuestos a factores de riesgo químico asociados a gases y vapores orgánicos generados en los procesos de tratamiento del crudo. En el presente trabajo se realizaron mediciones de calidad de aire e higiene industrial en diferentes estaciones tratamiento de crudo, con el propósito de evaluar los niveles de exposición de los operadores a gases y vapores de hidrocarburos durante el proceso de tratamiento de crudo y dar respuesta a la siguiente pregunta: ¿existe relación entre la exposición ocupacional, las emisiones atmosféricas de gases (SO2, CO, H2S) y la percepción de afectación de la salud de los trabajadores que se encuentran expuestos durante la actividad laboral, en una empresa del sector de hidrocarburos? Se realizó un estudio de corte transversal, mediante la aplicación de cuestionarios sobre las condiciones de trabajo y de salud a 30 trabajadores que laboran en una estación de tratamiento de crudo de una compañía del sector de hidrocarburos. Los operadores objeto de estudio laboran en turnos rotativos, han estado vinculados con la compañía por más de dos años y tienen contrato directo, adicionalmente, se identificaron los factores de riesgos ambientales y ocupacionales para el grupo de trabajadores y se realizó una revisión de los informes de medición de higiene industrial y de calidad de aire de las estaciones donde labora el personal seleccionado con el fin de establecer si los resultados se relacionan. Los resultados obtenidos indican que el 100% de los trabajadores son de género masculino y se desempeñan en cargos de operadores, recorredores de pozos de crudo y supervisores. El 97% de los operadores tiene más de cuarenta años de edad y el 80% de los mismos ha laborado por más de 6 años en la compañía. Acerca de la percepción de los trabajadores sobre su estado de salud el 90% afirma que su salud es buena, el 97% respondió que no presenta problemas respiratorios, el 23% manifiesta que presenta trastornos dermatológicos y el 27% indican que presenta dolor de cabeza constante. De la revisión de los informes de calidad de aire disponibles se encontró que las mediciones de Dióxido de Azufre SO2, Monóxido de Carbono CO se encuentran dentro del rango definido como el de menor impacto para la salud humana. De los datos del informe se puede concluir que la calidad del aire es buena en el 100% de las áreas de influencia de las estaciones de tratamiento de crudo. Según los informes de higiene industrial el 34% de las instalaciones presenta concentraciones de Sulfuro de Hidrógeno (H2S) en el límite permisible para exposiciones crónicas en un promedio ponderado de tiempo (TLV-TWA) y el límite permisible para exposiciones agudas en un límite de exposición a corto plazo (TLV-STEL). Solo el 37% de los trabajadores objeto de este estudio percibe el riesgo por la exposición a factores de riesgo químicos y son claramente consientes que se encuentran expuestos a estos riesgos por la manipulación de productos químicos y exposición a sustancias químicas producto de sus actividades rutinarias, el 73% no percibe el riesgo de exposición por su actividad laboral. Se recomienda que la compañía fortalezca su esquema de vigilancia para generar alternativas que eleven los niveles de consciencia del riesgo del trabajador. Los factores de riesgo ambiental y ocupacional, de los gases y vapores generados se deben al proceso de tratamiento de crudo, están mutuamente relacionados dado que al generarse una emisión y/o escape no controlado como consecuencia se tiene una afectación directa al medio ambiente y a los trabajadores.
Resumo:
Experimental evidence suggests that nitric oxide (NO) and hydrogen sulfide (H2S) signaling pathways are intimately intertwined, with mutual attenuation or potentiation of biological responses in the cardiovascular system and elsewhere. The chemical basis of this interaction is elusive. Moreover, polysulfides recently emerged as potential mediators of H2S/sulfide signaling, but their biosynthesis and relationship to NO remain enigmatic. We sought to characterize the nature, chemical biology, and bioactivity of key reaction products formed in the NO/sulfide system. At physiological pH, we find that NO and sulfide form a network of cascading chemical reactions that generate radical intermediates as well as anionic and uncharged solutes, with accumulation of three major products: nitrosopersulfide (SSNO−), polysulfides, and dinitrososulfite N-nitrosohydroxylamine-N-sulfonate (SULFI/NO), each with a distinct chemical biology and in vitro and in vivo bioactivity. SSNO− is resistant to thiols and cyanolysis, efficiently donates both sulfane sulfur and NO, and potently lowers blood pressure. Polysulfides are both intermediates and products of SSNO− synthesis/decomposition, and they also decrease blood pressure and enhance arterial compliance. SULFI/NO is a weak combined NO/nitroxyl donor that releases mainly N2O on decomposition; although it affects blood pressure only mildly, it markedly increases cardiac contractility, and formation of its precursor sulfite likely contributes to NO scavenging. Our results unveil an unexpectedly rich network of coupled chemical reactions between NO and H2S/sulfide, suggesting that the bioactivity of either transmitter is governed by concomitant formation of polysulfides and anionic S/N-hybrid species. This conceptual framework would seem to offer ample opportunities for the modulation of fundamental biological processes governed by redox switching and sulfur trafficking.
Resumo:
Background Recent experimental evidence suggests that nitric oxide (NO) and hydrogen sulfide signaling pathways are intimately intertwined particularly in the vasculature, with mutual attenuation or potentiation of biological responses under control of the soluble guanylyl cyclase (sGC) / phopshodiesterase (PDE) pathway. There is now compelling evidence that part of the NO/sulfide cross talk has a chemical foundation via the formation of S/N-hybrid molecules including thionitrous acid (HSNO) and nitrosopersulfde (SSNO-). The aim of this study was to characterize the bioactive products of the interaction between sulfide and NO metabolites targeting sGC that may potentially regulate vasodilation. Results We found that the chemical interaction of sulfide with NO or nitrosothiols leads to formation of S/N-hybrid metabolites including SSNO- via intermediate formation of HSNO. Contrary to a recent report in the literature but consistent with the transient nature of HSNO, its formation was not detectable by high-resolution mass spectrometry under physiologically relevant conditions. SSNO- is also formed in non-aqueous media by the reaction of nitrite with oxidized sulfur species including colloidal sulfur and polysulfides. SSNO- is stable in the presence of high concentrations of thiols, release NO, and activates sGC in RFL-6 cells in an NO-dependent fashion. Moreover, SSNO- is a potent vasodilator in aortic rings in vitro and lowers blood pressure in rats in vivo. The presence of high concentrations of SOD or thiols does not affect SSNO- mediated sGC activation, while it potentiates and inhibits the effects of the nitroxyl (HNO) donor Angeli's salt, suggesting that HNO release from SSNO- is not involved in sGC activation. Conclusion The reaction between NO and sulfide leads to fomation of S/N-hybrid molecules including SSNO-, releasing NO, activating sGC and inducing vasodilation. SSNO- is considerably more stable than HSNO at pH 7.4 and thus a more likely biological mediator that can account for the chemical cross-talk between NO and sulfide.