924 resultados para IEEE 1451


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The upcoming IEEE 802.11ac standard boosts the throughput of previous IEEE 802.11n by adding wider 80 MHz and 160 MHz channels with up to 8 antennas (versus 40 MHz channel and 4 antennas in 802.11n). This necessitates new 1-8 stream 256/512-point Fast Fourier Transform (FFT) / inverse FFT (IFFT) processing with 80/160 MSample/s throughput. Although there are abundant related work, they all fail to meet the requirements of IEEE 802.11ac FFT/IFFT on point size, throughput and multiple data streams at the same time. This paper proposes the first software defined FFT/IFFT architecture as a solution. By making use of a customised soft stream processor on FPGA, we show how a software defined FFT architecture can meet all the requirements of IEEE 802.11ac with low cost and high resource efficiency. When compared with dedicated Xilinx FFT core, our implementation exhibits only one third of the resources also up to three times of resource efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synchrophasors have become an important part of the modern power system and numerous applications have been developed covering wide-area monitoring, protection and control. Most applications demand continuous transmission of synchrophasor data across large geographical areas and require an efficient communication framework. IEEE C37.118-2 evolved as one of the most successful synchrophasor communication standards and is widely adopted. However, it lacks a predefined security mechanism and is highly vulnerable to cyber attacks. This paper analyzes different types of cyber attacks on IEEE C37.118-2 communication system and evaluates their possible impact on any developed synchrophasor application. Further, the paper also recommends an efficent security mechanism that can provide strong protection against cyber attacks. Although, IEEE C37.118-2 has been widely adopted, there is no clear understanding of the requirements and limitations. To this aim, the paper also presents detailed performance evaluation of IEEE C37.118-2 implementations which could help determine required resources and network characteristics before designing any synchrophasor application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta tese apresenta um estudo sobre alguns dos protocolos de cooperação MAC para redes sem fios utilizando o sistema IEEE 802.11 multi-débito. É proposto um novo modelo de arquitetura para a categorização e análise da cooperação em redes sem fios, tendo este modelo sido aplicado a protocolos cooperativos existentes para camada MAC. É investigado como as características do meio físico, assim como os requisitos de níveis superiores podem ser aplicados ao processo de cooperação, com vista a melhorar as características de funcionamento da rede de comunicações. Para este propósito são exploradas as métricas mais relevantes para o processo de cooperação. São igualmente estudados os limites impostos pelos protocolos da camada MAC e as limitações práticas impostas por protocolos da família de normas que compõem o IEEE 802.11. Neste trabalho foi criada uma métrica multicamada, que permite considerar os requisitos aplicacionais de performance e o tipo de tráfego, assim como a mobilidade dos dispositivos, no funcionamento dos mecanismos de cooperação. Como forma de validação, e para corretamente avaliar o impacto da métrica, um novo protocolo de cooperação foi desenvolvido e implementado. O seu funcionamento é descrito de forma analítica assim como validado através de a um ambiente de simulação. Os resultados obtidos mostram que a utilização de uma métrica multicamada é uma técnica robusta, fornecendo melhorias consistentes no contexto de redes IEEE 802.11. São igualmente demonstradas várias outras características de funcionamento com impacto para as comunicações. Estes dados fornecem uma visão real e encorajadora para a realização de mais pesquisas para a melhoria da performance dos protocolos cooperativos, assim como a sua utilização num variado número de aplicações futuras. No final do documento são apresentados alguns desafios para a continuação da investigação deste tópico.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vehicular networking is a new field that is expected to be widely adopted in the near future. One of the key applications inherent to this novel communications paradigm is content delivery to on-board users. In this paper we focus specifically on broadcast-based content delivery. We propose a content delivery scheme that is optimized for performance in order to improve the maximum amount of data than can be delivered, while also reducing delivery time to a minimum. With this goal our study combines both analytical and simulation results to determine the optimal packet size for content delivery so as to achieve the maximum throughput possible at different distances, and considering both static and mobile receivers. Experimental results show that our optimizations provide efficient delivery of multimedia contents for distances up to 200 meters when relying on IEEE 802.lip based broadcasting. Copyright © 2010 ACM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The IEEE 802.15.4 standard provides appealing features to simultaneously support real-time and non realtime traffic, but it is only capable of supporting real-time communications from at most seven devices. Additionally, it cannot guarantee delay bounds lower than the superframe duration. Motivated by this problem, in this paper we propose an Explicit Guaranteed time slot Sharing and Allocation scheme (EGSA) for beacon-enabled IEEE 802.15.4 networks. This scheme is capable of providing tighter delay bounds for real-time communications by splitting the Contention Free access Period (CFP) into smaller mini time slots and by means of a new guaranteed bandwidth allocation scheme for a set of devices with periodic messages. At the same the novel bandwidth allocation scheme can maximize the duration of the CFP for non real-time communications. Performance analysis results show that the EGSA scheme works efficiently and outperforms competitor schemes both in terms of guaranteed delay and bandwidth utilization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cluster scheduling and collision avoidance are crucial issues in large-scale cluster-tree Wireless Sensor Networks (WSNs). The paper presents a methodology that provides a Time Division Cluster Scheduling (TDCS) mechanism based on the cyclic extension of RCPS/TC (Resource Constrained Project Scheduling with Temporal Constraints) problem for a cluster-tree WSN, assuming bounded communication errors. The objective is to meet all end-to-end deadlines of a predefined set of time-bounded data flows while minimizing the energy consumption of the nodes by setting the TDCS period as long as possible. Sinceeach cluster is active only once during the period, the end-to-end delay of a given flow may span over several periods when there are the flows with opposite direction. The scheduling tool enables system designers to efficiently configure all required parameters of the IEEE 802.15.4/ZigBee beaconenabled cluster-tree WSNs in the network design time. The performance evaluation of thescheduling tool shows that the problems with dozens of nodes can be solved while using optimal solvers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The simulation analysis is important approach to developing and evaluating the systems in terms of development time and cost. This paper demonstrates the application of Time Division Cluster Scheduling (TDCS) tool for the configuration of IEEE 802.15.4/ZigBee beaconenabled cluster-tree WSNs using the simulation analysis, as an illustrative example that confirms the practical applicability of the tool. The simulation study analyses how the number of retransmissions impacts the reliability of data transmission, the energy consumption of the nodes and the end-to-end communication delay, based on the simulation model that was implemented in the Opnet Modeler. The configuration parameters of the network are obtained directly from the TDCS tool. The simulation results show that the number of retransmissions impacts the reliability, the energy consumption and the end-to-end delay, in a way that improving the one may degrade the others.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The IEEE 802.15.4 is the most widespread used protocol for Wireless Sensor Networks (WSNs) and it is being used as a baseline for several higher layer protocols such as ZigBee, 6LoWPAN or WirelessHART. Its MAC (Medium Access Control) supports both contention-free (CFP, based on the reservation of guaranteed time-slots GTS) and contention based (CAP, ruled by CSMA/CA) access, when operating in beacon-enabled mode. Thus, it enables the differentiation between real-time and best-effort traffic. However, some WSN applications and higher layer protocols may strongly benefit from the possibility of supporting more traffic classes. This happens, for instance, for dense WSNs used in time-sensitive industrial applications. In this context, we propose to differentiate traffic classes within the CAP, enabling lower transmission delays and higher success probability to timecritical messages, such as for event detection, GTS reservation and network management. Building upon a previously proposed methodology (TRADIF), in this paper we outline its implementation and experimental validation over a real-time operating system. Importantly, TRADIF is fully backward compatible with the IEEE 802.15.4 standard, enabling to create different traffic classes just by tuning some MAC parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The IEEE 802.15.4/ZigBee protocols are gaining increasing interests in both research and industrial communities as candidate technologies for Wireless Sensor Network (WSN) applications. In this paper, we present an open-source implementation of the IEEE 802.15.4/Zigbee protocol stack under the TinyOS operating system for the MICAz motes. This work has been driven by the need for an open-source implementation of the IEEE 802.15.4/ZigBee protocols, filling a gap between some newly released complex C implementations and black-box implementations from different manufacturers. In addition, we share our experience on the challenging problem that we have faced during the implementation of the protocol stack on the MICAz motes. We strongly believe that this open-source implementation will potentiate research works on the IEEE 802.15.4/Zigbee protocols allowing their demonstration and validation through experimentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While the IEEE 802.15.4/Zigbee protocol stack is being considered as a promising technology for low-cost low-power Wireless Sensor Networks (WSNs), several issues in the standard specifications are still open. One of those ambiguous issues is how to build a synchronized multi-hop cluster-tree network, which is quite suitable for ensuring QoS support in WSNs. In fact, the current IEEE 802.15.4/Zigbee specifications restrict the synchronization in the beacon-enabled mode (by the generation of periodic beacon frames) to star-based networks, while it supports multi-hop networking using the peer-to-peer mesh topology, but with no synchronization. Even though both specifications mention the possible use of cluster-tree topologies, which combine multihop and synchronization features, the description on how to effectively construct such a network topology is missing. This paper tackles this problem, unveils the ambiguities regarding the use of the cluster-tree topology and proposes a synchronization mechanism based on Time Division Beacon Scheduling to construct cluster-tree WSNs. We also propose a methodology for an efficient duty cycle management in each router (cluster-head) of a cluster-tree WSN that ensures the fairest use of bandwidth resources. The feasibility of the proposal is clearly demonstrated through an experimental test bed based on our own implementation of the IEEE 802.15.4/Zigbee protocol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless Sensor Networks (WSNs) have been attracting increasing interests for developing a new generation of embedded systems with great potential for many applications such as surveillance, environment monitoring, emergency medical response and home automation. However, the communication paradigms in WSNs differ from the ones attributed to traditional wireless networks, triggering the need for new communication protocols. In this context, the recently standardised IEEE 802.15.4 protocol presents some potentially interesting features for deployment in wireless sensor network applications, such as power-efficiency, timeliness guarantees and scalability. Nevertheless, when addressing WSN applications with (soft/hard) timing requirements some inherent paradoxes emerge, such as power-efficiency versus timeliness, triggering the need of engineering solutions for an efficient deployment of IEEE 802.15.4 in WSNs. In this technical report, we will explore the most relevant characteristics of the IEEE 802.15.4 protocol for wireless sensor networks and present the most important challenges regarding time-sensitive WSN applications. We also provide some timing performance and analysis of the IEEE 802.15.4 that unveil some directions for resolving the previously mentioned paradoxes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The IEEE 802.15.4 protocol proposes a flexible communication solution for Low-Rate Wireless Personal Area Networks including sensor networks. It presents the advantage to fit different requirements of potential applications by adequately setting its parameters. When enabling its beacon mode, the protocol makes possible real-time guarantees by using its Guaranteed Time Slot (GTS) mechanism. This paper analyzes the performance of the GTS allocation mechanism in IEEE 802.15.4. The analysis gives a full understanding of the behavior of the GTS mechanism with regards to delay and throughput metrics. First, we propose two accurate models of service curves for a GTS allocation as a function of the IEEE 802.15.4 parameters. We then evaluate the delay bounds guaranteed by an allocation of a GTS using Network Calculus formalism. Finally, based on the analytic results, we analyze the impact of the IEEE 802.15.4 parameters on the throughput and delay bound guaranteed by a GTS allocation. The results of this work pave the way for an efficient dimensioning of an IEEE 802.15.4 cluster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we analyze the performance limits of the slotted CSMA/CA mechanism of IEEE 802.15.4 in the beacon-enabled mode for broadcast transmissions in WSNs. The motivation for evaluating the beacon-enabled mode is due to its flexibility for WSN applications as compared to the non-beacon enabled mode. Our analysis is based on an accurate simulation model of the slotted CSMA/CA mechanism on top of a realistic physical layer, with respect to the IEEE 802.15.4 standard specification. The performance of the slotted CSMA/CA is evaluated and analyzed for different network settings to understand the impact of the protocol attributes (superframe order, beacon order and backoff exponent) on the network performance, namely in terms of throughput (S), average delay (D) and probability of success (Ps). We introduce the concept of utility (U) as a combination of two or more metrics, to determine the best offered load range for an optimal behavior of the network. We show that the optimal network performance using slotted CSMA/CA occurs in the range of 35% to 60% with respect to an utility function proportional to the network throughput (S) divided by the average delay (D).