233 resultados para IEE
Resumo:
The authors consider the problem of a robot manipulator operating in a noisy workspace. The manipulator is required to move from an initial position P(i) to a final position P(f). P(i) is assumed to be completely defined. However, P(f) is obtained by a sensing operation and is assumed to be fixed but unknown. The authors approach to this problem involves the use of three learning algorithms, the discretized linear reward-penalty (DLR-P) automaton, the linear reward-penalty (LR-P) automaton and a nonlinear reinforcement scheme. An automaton is placed at each joint of the robot and by acting as a decision maker, plans the trajectory based on noisy measurements of P(f).
Resumo:
The Routh-stability method is employed to reduce the order of discrete-time system transfer functions. It is shown that the Routh approximant is well suited to reduce both the denominator and the numerator polynomials, although alternative methods, such as PadÃ�Â(c)-Markov approximation, are also used to fit the model numerator coefficients.
Resumo:
An error polynomial is defined, the coefficients of which indicate the difference at any instant between a system and a model of lower order approximating the system. It is shown how Markov parameters and time series proportionals of the model can be matched with those of the system by setting error polynomial coefficients to zero. Also discussed is the way in which the error between system and model can be considered as being a filtered form of an error input function specified by means of model parameter selection.
Resumo:
The basic assumption from implicit self-tuning theory is that, for self tuning to occur, the control input obtained from the estimated system model converges to the value whic would be obtained if the system parameters were known. As as direct result of this, only certain control strategies are acceptable. Here a general rule for the self-tuning property of pole-placement self tuners is obtained, and previous strategies are shown to be special cases of this.
Resumo:
Intelligent control, as a discipline, has certainly been one of main growth areas in the field of control systems over the last 5-10 years. Although the topic is relatively new in itself, a number of other research areas, some of them well established, have effectively been swallowed up under the overall intelligent control umbrella. This paper defines intelligent control and identifies the main sub-areas in which significant progress has been made and likely fruitful topics to pursue in the future.
Resumo:
With the advance of information technology capabilities, and the importance of human computer interfaces within society there has been a significant increase in research activity within the field of human computer interaction (HCI). This paper summarizes some of the work undertaken to date, paying particular attention to methods applicable to on-line control and monitoring systems such as those employed by The National Grid Company plc.
Resumo:
In high speed manufacturing systems, continuous operation is desirable, with minimal disruption for repairs and service. An intelligent diagnostic monitoring system, designed to detect developing faults before catastrophic failure, or prior to undesirable reduction in output quality, is a good means of achieving this. Artificial neural networks have already been found to be of value in fault diagnosis of machinery. The aim here is to provide a system capable of detecting a number of faults, in order that maintenance can be scheduled in advance of sudden failure, and to reduce the necessity to replace parts at intervals based on mean time between failures. Instead, parts will need to be replaced only when necessary. Analysis of control information in the form of position error data from two servomotors is described.
Resumo:
This paper deals with the integration of radial basis function (RBF) networks into the industrial software control package Connoisseur. The paper shows the improved modelling capabilities offered by RBF networks within the Connoisseur environment compared to linear modelling techniques such as recursive least squares. The paper also goes on to mention the way this improved modelling capability, obtained through the RBF networks will be utilised within Connoisseur.
Resumo:
The authors discuss an implementation of an object oriented (OO) fault simulator and its use within an adaptive fault diagnostic system. The simulator models the flow of faults around a power network, reporting switchgear indications and protection messages that would be expected in a real fault scenario. The simulator has been used to train an adaptive fault diagnostic system; results and implications are discussed.
Resumo:
A number of commonly encountered simple neural network types are discussed, with particular attention being paid to their applicability in automation and control when applied to food processing. In the first instance n-tuple networks are considered, these being particularly useful for high speed production checking operations. Subsequently backpropagation networks are discussed, these being useful both in a more familiar feedback control arrangement and also for such things as recipe prediction.
Resumo:
The problem of adjusting the weights (learning) in multilayer feedforward neural networks (NN) is known to be of a high importance when utilizing NN techniques in various practical applications. The learning procedure is to be performed as fast as possible and in a simple computational fashion, the two requirements which are usually not satisfied practically by the methods developed so far. Moreover, the presence of random inaccuracies are usually not taken into account. In view of these three issues, an alternative stochastic approximation approach discussed in the paper, seems to be very promising.
Resumo:
The paper presents an overview of dynamic systems with inherent delays in both feedforward and feedback paths and how the performance of such systems can be affected by such delays. The authors concentrate on visually guided systems, where the behaviour of the system is largely dependent on the results of the vision sensors, with particular reference to active robot heads (real-time gaze control). We show how the performance of such systems can deteriorate substantially with the presence of unknown and/or variable delays. Considered choice of system architecture, however, allows the performance of active vision systems to be optimised with respect to the delays present in the system.