601 resultados para Hypothalamic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that endocannabinoids play an important role in the regulation of food intake and body weight. Endocannabinoids and cannabinoid receptors are found in the hypothalamus and brainstem, which are central areas involved in the control of food intake and energy expenditure. Activation of these areas is related to hypophagia observed during inflammatory stimulus. This study investigated the effects of cannabinoid (CB1) receptor blockade on lipopolysaccharide (LPS)-induced hypophagia. Male Wistar rats were pretreated with rimonabant (10 mg/kg, by gavage) or vehicle; 30 min later they received an injection of either LPS (100 mu g/kg, intraperitoneal) or saline. Food intake, body weight, corticosterone response, CRF and CART mRNA expression, Fos-CRF and Fos-alpha-MSH immunoreactivity in the hypothalamus and Fos-tyrosine hydroxylase (TH) immunoreactivity in the brainstem were evaluated. LPS administration decreased food intake and body weight gain and increased plasma corticosterone levels and CRF mRNA expression in the PVN. We also observed an increase in Fos-CRF and Fos-TH double-labeled neurons after LPS injection in vehicle-pretreated rats, with no changes in CART mRNA or Fos-alpha-MSH immunoreactive neurons in the ARC. In saline-treated animals, rimonabant pretreatment decreased food intake and body weight gain but did not modify hormone response or Fos expression in the hypothalamus and brainstem compared with vehicle-pretreated rats. Rimonabant pretreatment potentiated LPS-induced hypophagia, body weight loss and Fos-CRF and Fos-TH expressing neurons. Rimonabant did not modify corticosterone, CRF mRNA or Fos-alpha-MSH responses in rats treated with LPS. These data suggest that the endocannabinoid system, mediated by CB1 receptors, modulates hypothalamic and brainstem circuitry underlying the hypophagic effect during endotoxemia to prevent an exaggerated food intake decrease. This article is part of a Special Issue entitled 'Central Control of Food Intake'. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During exercise, intense brain activity orchestrates an increase in muscle tension. Additionally, there is an increase in cardiac output and ventilation to compensate the increased metabolic demand of muscle activity and to facilitate the removal of CO2 from and the delivery of O-2 to tissues. Here we tested the hypothesis that a subset of pontomedullary and hypothalamic neurons could be activated during dynamic acute exercise. Male Wistar rats (250-350 g) were divided into an exercise group (n = 12) that ran on a treadmill and a no-exercise group (n = 7). Immunohistochemistry of pontomedullary and hypothalamic sections to identify activation (c-Fos expression) of cardiorespiratory areas showed that the no-exercise rats exhibited minimal Fos expression. In contrast, there was intense activation of the nucleus of the solitary tract, the ventrolateral medulla (including the presumed central chemoreceptor neurons in the retrotrapezoid/parafacial region), the lateral parabrachial nucleus, the Kolliker-Fuse region, the perifornical region, which includes the perifornical area and the lateral hypothalamus, the dorsal medial hypothalamus, and the paraventricular nucleus of the hypothalamus after running exercise. Additionally, we observed Fos immunoreactivity in catecholaminergic neurons within the ventrolateral medulla (C1 region) without Fos expression in the A2, A5 and A7 neurons. In summary, we show for the first time that after acute exercise there is an intense activation of brain areas crucial for cardiorespiratory control. Possible involvement of the central command mechanism should be considered. Our results suggest whole brain-specific mobilization to correct and compensate the homeostatic changes produced by acute exercise. (c) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies on the environmental consequences of stress are relevant for economic and animal welfare reasons. We recently reported that long-term heat stressors (31 +/- 1 degrees C and 36 +/- 1 degrees C for 10 h/d) applied to broiler chickens (Gallus gallus domesticus) from d 35 to 42 of life increased serum corticosterone concentrations, decreased performance variables and the macrophage oxidative burst, and produced mild, multifocal acute enteritis. Being cognizant of the relevance of acute heat stress on tropical and subtropical poultry production, we designed the current experiment to analyze, from a neuroimmune perspective, the effects of an acute heat stress (31 +/- 1 degrees C for 10 h on d 35 of life) on serum corticosterone, performance variables, intestinal histology, and peritoneal macrophage activity in chickens. We demonstrated that the acute heat stress increased serum corticosterone concentrations and mortality and decreased food intake, BW gain, and feed conversion (P < 0.05). We did not find changes in the relative weights of the spleen, thymus, and bursa of Fabricius (P > 0.05). Increases in the basal and the Staphylococcus aureus-induced macrophage oxidative bursts and a decrease in the percentage of macrophages performing phagocytosis were also observed. Finally, mild, multifocal acute enteritis, characterized by the increased presence of lymphocytes and plasmocytes within the lamina propria of the jejunum, was also observed. We found that the stress-induced hypothalamic-pituitary-adrenal axis activation was responsible for the negative effects observed on chicken performance and immune function as well as for the changes in the intestinal mucosa. The data presented here corroborate with those presented in other studies in the field of neuroimmunomodulation and open new avenues for the improvement of broiler chicken welfare and production performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stern JE, Sonner PM, Son SJ, Silva FC, Jackson K, Michelini LC. Exercise training normalizes an increased neuronal excitability of NTS-projecting neurons of the hypothalamic paraventricular nucleus in hypertensive rats. J Neurophysiol 107: 2912-2921, 2012. First published February 22, 2012; doi:10.1152/jn.00884.2011.-Elevated sympathetic outflow and altered autonomic reflexes, including impaired baroreflex function, are common findings observed in hypertensive disorders. Although a growing body of evidence supports a contribution of preautonomic neurons in the hypothalamic paraventricular nucleus (PVN) to altered autonomic control during hypertension, the precise underlying mechanisms remain unknown. Here, we aimed to determine whether the intrinsic excitability and repetitive firing properties of preautonomic PVN neurons that innervate the nucleus tractus solitarii (PVN-NTS neurons) were altered in spontaneously hypertensive rats (SHR). Moreover, given that exercise training is known to improve and/or correct autonomic deficits in hypertensive conditions, we evaluated whether exercise is an efficient behavioral approach to correct altered neuronal excitability in hypertensive rats. Patch-clamp recordings were obtained from retrogradely labeled PVN-NTS neurons in hypothalamic slices obtained from sedentary (S) and trained (T) Wistar-Kyoto (WKY) and SHR rats. Our results indicate an increased excitability of PVN-NTS neurons in SHR-S rats, reflected by an enhanced input-output function in response to depolarizing stimuli, a hyperpolarizing shift in Na+ spike threshold, and smaller hyperpolarizing afterpotentials. Importantly, we found exercise training in SHR rats to restore all these parameters back to those levels observed in WKY-S rats. In several cases, exercise evoked opposing effects in WKY-S rats compared with SHR-S rats, suggesting that exercise effects on PVN-NTS neurons are state dependent. Taken together, our results suggest that elevated preautonomic PVN-NTS neuronal excitability may contribute to altered autonomic control in SHR rats and that exercise training efficiently corrects these abnormalities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hypothalamus is a forebrain structure critically involved in the organization of defensive responses to aversive stimuli. Gamma-aminobutyric acid (GABA)ergic dysfunction in dorsomedial and posterior hypothalamic nuclei is implicated in the origin of panic-like defensive behavior, as well as in pain modulation. The present study was conducted to test the difference between these two hypothalamic nuclei regarding defensive and antinociceptive mechanisms. Thus, the GABA A antagonist bicuculline (40 ng/0.2 µL) or saline (0.9% NaCl) was microinjected into the dorsomedial or posterior hypothalamus in independent groups. Innate fear-induced responses characterized by defensive attention, defensive immobility and elaborate escape behavior were evoked by hypothalamic blockade of GABA A receptors. Fear-induced defensive behavior organized by the posterior hypothalamus was more intense than that organized by dorsomedial hypothalamic nuclei. Escape behavior elicited by GABA A receptor blockade in both the dorsomedial and posterior hypothalamus was followed by an increase in nociceptive threshold. Interestingly, there was no difference in the intensity or in the duration of fear-induced antinociception shown by each hypothalamic division presently investigated. The present study showed that GABAergic dysfunction in nuclei of both the dorsomedial and posterior hypothalamus elicit panic attack-like defensive responses followed by fear-induced antinociception, although the innate fear-induced behavior originates differently in the posterior hypothalamus in comparison to the activity of medial hypothalamic subdivisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background/Aims: Early life experiences are homeostatic determinants for adult organisms. We evaluated the impact of prenatal immune activation during late gestation on the neuroimmune-endocrine function of adult offspring and its interaction with acute stress. Methods: Pregnant Swiss mice received saline or lipopolysaccharide (LPS) on gestational day 17. Adult male offspring were assigned to the control or restraint stress condition. We analyzed plasmatic corticosterone and catecholamine levels, the monoamine content in the hypothalamus, striatum and frontal cortex, and the sleep-wake cycle before and after acute restraint stress. Results and Conclusion: Offspring from LPS-treated dams had increased baseline norepinephrine levels and potentiated corticosterone secretion after the acute stressor, and no effect was observed on hypothalamic monoamine content or sleep behavior. The offspring of immune-activated dams exhibited impairments in stress-induced serotonergic and dopaminergic alterations in the striatum and frontal cortex. The data demonstrate a distinction between the plasmatic levels of corticosterone in response to acute stress and the hypothalamic monoamine content and sleep patterns. We provide new evidence regarding the influence of immune activation during late gestation on the neuroendocrine homeostasis of offspring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melatonin can contribute to glucose homeostasis either by decreasing gluconeogenesis or by counteracting insulin resistance in distinct models of obesity. However, the precise mechanism through which melatonin controls glucose homeostasis is not completely understood. Male Wistar rats were administered an intracerebroventricular (icv) injection of melatonin and one of following: an icv injection of a phosphatidylinositol 3-kinase (PI3K) inhibitor, an icv injection of a melatonin receptor (MT) antagonist, or an intraperitoneal (ip) injection of a muscarinic receptor antagonist. Anesthetized rats were subjected to pyruvate tolerance test to estimate in vivo glucose clearance after pyruvate load and in situ liver perfusion to assess hepatic gluconeogenesis. The hypothalamus was removed to determine Akt phosphorylation. Melatonin injections in the central nervous system suppressed hepatic gluconeogenesis and increased hypothalamic Akt phosphorylation. These effects of melatonin were suppressed either by icv injections of PI3K inhibitors and MT antagonists and by ip injection of a muscarinic receptor antagonist. We conclude that melatonin activates hypothalamus-liver communication that may contribute to circadian adjustments of gluconeogenesis. These data further suggest a physiopathological relationship between the circadian disruptions in metabolism and reduced levels of melatonin found in type 2 diabetes patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study tested whether chronic systemic administration of 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) could attenuate hyperphagia, reduce lean and fat mass losses, and improve whole-body energy homeostasis in insulin-deficient rats. Male Wistar rats were first rendered diabetic through streptozotocin (STZ) administration and then intraperitoneally injected with AICAR for 7 consecutive days. Food and water intake, ambulatory activity, and energy expenditure were assessed at the end of the AICAR-treatment period. Blood was collected for circulating leptin measurement and the hypothalami were extracted for the determination of suppressor of cytokine signaling 3 (SOCS3) content, as well as the content and phosphorylation of AMP-kinase (AMPK), acetyl-CoA carboxylase (ACC), and the signal transducer and activator of transcription 3 (STAT3). Rats were thoroughly dissected for adiposity and lean body mass (LBM) determinations. In non-diabetic rats, despite reducing adiposity, AICAR increased (∼1.7-fold) circulating leptin and reduced hypothalamic SOCS3 content and food intake by 67% and 25%, respectively. The anorexic effect of AICAR was lost in diabetic rats, even though hypothalamic AMPK and ACC phosphorylation markedly decreased in these animals. Importantly, hypothalamic SOCS3 and STAT3 levels remained elevated and reduced, respectively, after treatment of insulin-deficient rats with AICAR. Diabetic rats were lethargic and displayed marked losses of fat and LBM. AICAR treatment increased ambulatory activity and whole-body energy expenditure while also attenuating diabetes-induced fat and LBM losses. In conclusion, AICAR did not reverse hyperphagia, but it promoted anti-catabolic effects on skeletal muscle and fat, enhanced spontaneous physical activity, and improved the ability of rats to cope with the diabetes-induced dysfunctional alterations in glucose metabolism and whole-body energy homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P2X receptors are expressed on ventrolateral medulla projecting paraventricular nucleus (PVN) neurons. Here, we investigate the role of adenosine 5′-triphosphate (ATP) in modulating sympathetic nerve activity (SNA) at the level of the PVN. We used an in situ arterially perfused rat preparation to determine the effect of P2 receptor activation and the putative interaction between purinergic and glutamatergic neurotransmitter systems within the PVN on lumbar SNA (LSNA). Unilateral microinjection of ATP into the PVN induced a dose-related increase in the LSNA (1 nmol: 38 ± 6 %, 2.5 nmol: 72 ± 7 %, 5 nmol: 96 ± 13 %). This increase was significantly attenuated by blockade of P2 receptors (pyridoxalphosphate-6-azophenyl-20,40-disulphonic acid, PPADS) and glutamate receptors (kynurenic acid, KYN) or a combination of both. The increase in LSNA elicited by L-glutamate microinjection into the PVN was not affected by a previous injection of PPADS. Selective blockade of non-N-methyl-D-aspartate receptors (6-cyano-7-nitroquinoxaline-2,3-dione disodium salt, CNQX), but not N-methyl-D-aspartate receptors (NMDA) receptors (DL-2-amino-5-phosphonopentanoic acid, AP5), attenuated the ATP-induced sympathoexcitatory effects at the PVN level. Taken together, our data show that purinergic neurotransmission within the PVN is involved in the control of SNA via P2 receptor activation. Moreover, we show an interaction between P2 receptors and non-NMDA glutamate receptors in the PVN suggesting that these functional interactions might be important in the regulation of sympathetic outflow

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paraventricular nucleus (PVN) of the hypothalamus plays an important role in the regulation of sympathetic nerve activity, which is significantly elevated in chronic heart failure (CHF). Fractalkine (FKN) and its cognate receptor, CX3CR1, are constitutively expressed in the central nervous system, but their role and physiological significance are not well known. The aims of the present study were to determine whether FKN plays a cardiovascular role within the PVN and to investigate how the actions of FKN might be altered in CHF. We show that both FKN and CX3CR1 are expressed on neurons in the PVN of rats, suggesting that they may have a physiological function in this brain nucleus. Unilateral microinjection of FKN directly into the PVN of anaesthetized rats elicited a significant dose-related decrease in blood pressure (1.0 nmol, -5 ± 3 mmHg; 2.5 nmol, -13 ± 2 mmHg; 5.0 nmol, -22 ± 3 mmHg; and 7.5 nmol, -32 ± 3 mmHg) and a concomitant increase in heart rate (1.0 nmol, 6 ± 3 beats min(-1); 2.5 nmol, 11 ± 3 beats min(-1); 5 nmol, 18 ± 4 beats min(-1); and 7.5 nmol, 27 ± 5 beats min(-1)) compared with control saline microinjections. In order to determine whether FKN signalling is altered in rats with CHF, we first performed quantitative RT-PCR and Western blot analysis and followed these experiments with functional studies in rats with CHF and sham-operated control rats. We found a significant increase in CX3CR1 mRNA and protein expression, as determined by quantitative RT-PCR and Western blot analysis, respectively, in the PVN of rats with CHF compared with sham-operated control rats. We also found that the blood pressure effects of FKN (2.5 nmol in 50 nl) were significantly attenuated in rats with CHF (change in mean arterial pressure, -6 ± 3 mmHg) compared with sham-operated control rats (change in mean arterial pressure, -16 ± 6 mmHg). These data suggest that FKN and its receptor, CX3CR1, modulate cardiovascular function at the level of the PVN and that the actions of FKN within this nucleus are altered in heart failure

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evaluation of chronic activity of the hypothalamic-pituitary-adrenal (HPA) axis is critical for determining the impact of chronic stressful situations. The potential use of hair glucocorticoids as a non-invasive, retrospective, biomarker of long term HPA activity is of great interest, and it is gaining acceptance in humans and animals. However, there are still no studies in literature examining hair cortisol concentration in pigs and corticosterone concentration in laboratory rodents. Therefore, we developed and validated, for the first time, a method for measuring hair glucocorticoids concentration in commercial sows and in Sprague-Dawley rats. Our preliminary data demonstrated: 1) a validated and specific washing protocol and extraction assay method with a good sensitivity in both species; 2) the effect of the reproductive phase, housing conditions and seasonality on hair cortisol concentration in sows; 3) similar hair corticosterone concentration in male and female rats; 4) elevated hair corticosterone concentration in response to chronic stress manipulations and chronic ACTH administration, demonstrating that hair provides a good direct index of HPA activity over long periods than other indirect parameters, such adrenal or thymus weight. From these results we believe that this new non-invasive tool needs to be applied to better characterize the overall impact in livestock animals and in laboratory rodents of chronic stressful situations that negatively affect animals welfare. Nevertheless, further studies are needed to improve this methodology and maybe to develop animal models for chronic stress of high interest and translational value in human medicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A previous study identified the peroxisome proliferator-activated receptor alpha (PPARalpha) activation biomarkers 21-steroid carboxylic acids 11beta-hydroxy-3,20-dioxopregn-4-en-21-oic acid (HDOPA) and 11beta,20-dihydroxy-3-oxo-pregn-4-en-21-oic acid (DHOPA). In the present study, the molecular mechanism and the metabolic pathway of their production were determined. The PPARalpha-specific time-dependent increases in HDOPA and 20alpha-DHOPA paralleled the development of adrenal cortex hyperplasia, hypercortisolism, and spleen atrophy, which was attenuated in adrenalectomized mice. Wy-14,643 activation of PPARalpha induced hepatic FGF21, which caused increased neuropeptide Y and agouti-related protein mRNAs in the hypothalamus, stimulation of the agouti-related protein/neuropeptide Y neurons, and activation of the hypothalamic-pituitary-adrenal (HPA) axis, resulting in increased adrenal cortex hyperplasia and corticosterone production, revealing a link between PPARalpha and the HPA axis in controlling energy homeostasis and immune regulation. Corticosterone was demonstrated as the precursor of 21-carboxylic acids both in vivo and in vitro. Under PPARalpha activation, the classic reductive metabolic pathway of corticosterone was suppressed, whereas an alternative oxidative pathway was uncovered that leads to the sequential oxidation on carbon 21 resulting in HDOPA. The latter was then reduced to the end product 20alpha-DHOPA. Hepatic cytochromes P450, aldehyde dehydrogenase (ALDH3A2), and 21-hydroxysteroid dehydrogenase (AKR1C18) were found to be involved in this pathway. Activation of PPARalpha resulted in the induction of Aldh3a2 and Akr1c18, both of which were confirmed as target genes through introduction of promoter luciferase reporter constructs into mouse livers in vivo. This study underscores the power of mass spectrometry-based metabolomics combined with genomic and physiologic analyses in identifying downstream metabolic biomarkers and the corresponding upstream molecular mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heroin dependence is associated with a stressful environment and with dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis. The present study examined the acute effects of intravenous heroin versus placebo on the HPA axis response in heroin-dependent patients. Twenty-eight heroin-dependent patients in heroin-assisted treatment and 20 age- and sex-matched healthy participants were included in a controlled trial in which patients were twice administered heroin or saline in a crossover design, and healthy controls were only administered saline. The HPA axis response was measured by adrenocorticotropic hormone (ACTH) levels and by cortisol levels in serum and saliva before and 20 and 60 minutes after substance administration. Craving, withdrawal, and anxiety levels were measured before and 60 minutes after substance application. Plasma concentrations of heroin and its main metabolites were assessed using high-performance liquid chromatography. Heroin administration reduces craving, withdrawal, and anxiety levels and leads to significant decreases in ACTH and cortisol concentrations (P < 0.01). After heroin administration, cortisol concentrations did not differ from healthy controls, and ACTH levels were significantly lower (P < 0.01). In contrast, when patients receive saline, all hormone levels were significantly higher in patients than in healthy controls (P < 0.01). Heroin-dependent patients showed a normalized HPA axis response compared to healthy controls when they receive their regular heroin dose. These findings indicate that regular opioid administration protects addicts from stress and underscore the clinical significance of heroin-assisted treatment for heroin-dependent patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Symptomatic narcolepsy is often related to hypothalamic, pontine, or mesencephalic lesions. Despite evidence of disturbances of the hypothalamic hypocretin system in patients with idiopathic narcolepsy, neuroimaging in patients with idiopathic narcolepsy revealed conflicting results and there is limited data on possible structural brain changes that might be associated with this disorder.