490 resultados para Hyperbolic haves
Resumo:
2010 Mathematics Subject Classification: 35L10, 35L90.
Resumo:
2002 Mathematics Subject Classification: 35L80
Resumo:
2002 Mathematics Subject Classification: 35L15, 35L80, 35S05, 35S30
Resumo:
2002 Mathematics Subject Classification: Primary 35В05; Secondary 35L15
Resumo:
2000 Mathematics Subject Classification: 35L15, Secondary 35L30.
Resumo:
2000 Mathematics Subject Classification: 34E20, 35L80, 35L15.
Resumo:
2000 Mathematics Subject Classification: 12D10.
Resumo:
MSC 2010: 30C10, 32A30, 30G35
Resumo:
Az intertemporális döntések fontos szerepet játszanak a közgazdasági modellezésben, és azt írják le, hogy milyen átváltást alkalmazunk két különböző időpont között. A közgazdasági modellezésben az exponenciális diszkontálás a legelterjedtebb, annak ellenére, hogy az empirikus vizsgálatok alapján gyenge a magyarázó ereje. A gazdaságpszichológiában elterjedt általánosított hiperbolikus diszkontálás viszont nagyon nehezen alkalmazható közgazdasági modellezési célra. Így tudott gyorsan elterjedni a kvázi-hiperbolikus diszkontálási modell, amelyik úgy ragadja meg a főbb pszichológiai jelenségeket, hogy kezelhető marad a modellezés során. A cikkben azt állítjuk, hogy hibás az a megközelítés, hogy hosszú távú döntések esetén, főleg sorozatok esetén helyettesíthető a két hiperbolikus diszkontálás egymással. Így a hosszú távú kérdéseknél érdemes felülvizsgálni a kvázi-hiperbolikus diszkontálással kapott eredményeket, ha azok az általánosított hiperbolikus diszkontálási modellel való helyettesíthetőséget feltételezték. ____ Intertemporal choice is one of the crucial questions in economic modeling and it describes decisions which require trade-offs among outcomes occurring in different points in time. In economic modeling the exponential discounting is the most well known, however it has weak validity in empirical studies. Although according to psychologists generalized hyperbolic discounting has the strongest descriptive validity it is very complex and hard to use in economic models. In response to this challenge quasi-hyperbolic discounting was proposed. It has the most important properties of generalized hyperbolic discounting while tractability remains in analytical modeling. Therefore it is common to substitute generalized hyperbolic discounting with quasi-hyperbolic discounting. This paper argues that the substitution of these two models leads to different conclusions in long term decisions especially in the case of series; hence all the models that use quasi-hyperbolic discounting for long term decisions should be revised if they states that generalized hyperbolic discounting model would have the same conclusion.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
In the first part of this thesis we generalize a theorem of Kiming and Olsson concerning the existence of Ramanujan-type congruences for a class of eta quotients. Specifically, we consider a class of generating functions analogous to the generating function of the partition function and establish a bound on the primes ℓ for which their coefficients c(n) obey congruences of the form c(ℓn + a) ≡ 0 (mod ℓ). We use this last result to answer a question of H.C. Chan. In the second part of this thesis [S2] we explore a natural analog of D. Calegari’s result that there are no hyperbolic once-punctured torus bundles over S^1 with trace field having a real place. We prove a contrasting theorem showing the existence of several infinite families of pairs (−χ, p) such that there exist hyperbolic surface bundles over S^1 with trace field of having a real place and with fiber having p punctures and Euler characteristic χ. This supports our conjecture that with finitely many known exceptions there exist such examples for each pair ( −χ, p).
Resumo:
We develop a method based on spectral graph theory to approximate the eigenvalues and eigenfunctions of the Laplace-Beltrami operator of a compact riemannian manifold -- The method is applied to a closed hyperbolic surface of genus two -- The results obtained agree with the ones obtained by other authors by different methods, and they serve as experimental evidence supporting the conjectured fact that the generic eigenfunctions belonging to the first nonzero eigenvalue of a closed hyperbolic surface of arbitrary genus are Morse functions having the least possible total number of critical points among all Morse functions admitted by such manifolds