965 resultados para Hydrocarbons, Halogenated.
Resumo:
The general a(N) index (GAI) was used to characterize the cis, trans isomers of hydrocarbons. The best one-variable equations were obtained with GAI for several physicochemical properties of seven pairs of olefin cis, trans isomers. The linear correlation coefficients are in the range of 0.975 to 0.997. GAI was also compared with the other five topological indices, Randic connectivity index chi, Wiener number W, Hosoya index Z, the average distance sum connectivity J proposed by Balaban and a(N) index introduced by Yang, in correlating with the octane number (MON) of heptanes and octanes.
Resumo:
Four new halogenated nonterpenoid C-15-acetogenins, 4:7,6:13-bisepoxy-9,10-diol-1,12-dibromopentadeca-1,2-diene (1, laurendecumallene A), 4:7,6:12-bisepoxy-9,10-diol-1,13-dibromopentadeca-1,2-diene (2, laurendecumallene 13), (3Z)-6:10,7:13-bisepoxy-12-bromo-9-hydroperoxylpentadeca-3-en-1-yne (3, laurendecumenyne A), and (3Z)-6:10,9:13-bisepoxy-12-bromo-7-chloropentadeca-3-en-1-yne (4, laurendecumenyne 13), together with one known halogenated C-15-acetogenin elatenyne (5) were isolated and identified from the organic extract of the marine red alga Laurencia decumbens. Their structures and relative stereochemistry were established by means of spectroscopic analysis including UV, IR, high-resolution electrospray ionization mass spectrometry (HRESIMS), and ID and 2D NMR techniques. All these metabolites were submitted for the cytotoxic assay against tumor cell line A549 (human lung adenocarcinoma), but all of them were found inactive (IC50 > 10 mu g/mL).
Resumo:
Seven parguerane diterpenes: 15-bromo-2,7,19-triacetoxyparguer-9(11)-en-16-ol (1), 15-bromo-2,7,16,19-tetraacetoxyparguer-9(11)-ene (2), 15-bromo-2,19-diacetoxyparguer-9(11)-en-7,16-diol (3), 15-bromo-2,16,19-triacetoxyparguer-9(11)-en-7-ol (4), 15bromo-2,16-diacetoxyparguer-9(11)-en-7-ol (5), 15-bromoparguer-9(11)-en-16-ol (6), 15-bromoparguer-7-en-16-ol (7), two polyether triterpenes: thyrsiferol (8) and thyrsiferyl 23-acetate (9), and one C15-acetogenin, neolaurallene (10), were isolated from a sample of marine red alga Laurencia saitoi collected off the coast of Yantai. Their structures were established by detailed NMR spectroscopic analysis and comparison with literature data.
Resumo:
Four new halogenated sesquiterpenes, 10-bromo-3-chloro-2,7-epoxychamigr-9-en-8a-of (1), 2,10 beta-dibromochamigra-2,7-dien-9 alpha-ol (2), (9S)-2-bromo-3-chloro-6,9-epoxybisabola-7(14),10-diene (3), and (9R)-2-bromo-3-chloro-6,9-epoxybisabola-7(14),10-diene (4), were characterized from the marine red alga Laurencia saitoi. In addition, two known halosesquiterpenes, 2,10-dibromo-3-chlorochamigr-7-en-9 alpha-ol (5) and isolaurenisol (6), were also isolated and identified. Their structures were established on the basis of extensive analysis of spectroscopic data.
Resumo:
This study investigates the distribution of black carbon (BC) and its correlation with total polycyclic aromatic hydrocarbons (I PAH) pound in the surface sediments of China's marginal seas. BC content ranges from < 0.10 to 2.45 mg/g dw (grams dry weight) in the sediments studied, and varied among the different coastal regions. The Bohai Bay sediments had the highest BC contents (average 2.18 mg/g dw), which comprises a significant fraction (27%-41%) of the total organic carbon (TOC) preserved in the sediments. In comparison, BC in the surface sediments of the North Yellow Sea, Jiaozhou Bay, East China Sea and the South China Sea is less abundant and accounted for an average of 6%, 8%, 14% and 5%, respectively, of the sedimentary organic carbon pool. The concentration of I PAH pound in the surface sediments ranges from 41 to 3 667 ng/g dw and showed large spatial variations among the sampling sites of different costal regions. The Bohai Bay has the highest I PAH pound values, ranging from 79 to 3 667 ng/g dw. This reflects the high anthropogenically contaminated nature of the sediments in the bay. BC is positively correlated to TOC but a strong correlation is not found between BC and I PAH pound in the surface sediments studied, suggesting that BC and PAHs preserved in the sediments are derived from different sources and controlled by different biogeochemical processes. Our study suggests that the abundance of BC preserved in the sediments could represent a significant sink pool of carbon cycling in China's marginal seas.
Resumo:
Accumulation and distributions of aliphatic and polyaromatic hydrocarbons (PAHs) and heavy metals were measured in tissues of the clam Ruditapes philippinarum collected from 5 sites in Jiaozhou Bay, Qingdao, China. The concentrations of total aliphatic hydrocarbon and PAHs ranged from 570 to 2 574 ng/gdw (gram dry weight) and from 276 to 939 ng/gdw, in the most and least polluted sites, respectively. The bio-accumulation of hydrocarbons and PAHs in the clams appeared to be selective. Aliphatic hydrocarbons were predominantly represented by short chain (< nC(23)) n-alkanes, suggesting that petroleum hydrocarbons were likely the major contamination source. The selective uptake of 3 and 4 ring PAHs, such as naphthalene, fluorene, phenanthrene, fluoranthene and pyrene, by the clams was probably related to the physiological and bio-kinetic processes that were energetically favorable for uptake of compounds with fewer rings. Accumulation of the metals Cd, Cu, Zn, Pb, Cr, Hg, and As in the clam tissues also showed high variability, ranging from 0.043 to 87 A mu g/gdw. Among the 7 detected metals, Zn, Cd, Cu, and As had a particularly high potential of accumulation in R. philippinarum. In general, a positive correlation was found between the tissue concentrations and sediment concentrations of hydrocarbons and of some metals. Our study suggests that moderate contamination with polyaromatic hydrocarbons, and low to moderate contamination with metals, currently exists for clam R. philippinarum in Jiaozhou Bay, in comparison with other regional studies. A long-term monitoring program is certainly needed for assessment of the potential ecological influence and toxicity of these contaminants of R. philippinarum in Jiaozhou Bay.
Resumo:
Sixteen polycyclic aromatic hydrocarbons (PAHs) and 28 polychlorinated biphenyls (PCBs) were measured at a 2-cm interval in a core sample from the middle of the southern Yellow Sea for elucidating their historical variations in inflow and sources. The chronology was obtained using the Pb-210 method. PAHs concentrations decreased generally with depth and two climax values occurred in 14-16 cm and 20-22 cm layers, demonstrating that the production and usage of PAHs might reach peaks in the periods of 1956-1962 and 1938-1944. The booming economy and the navy battles of the Second World War might explain why the higher levels were detected in the two layers. The result of principal component analysis (PCA) revealed that PAHs were primarily owing to the combustion product. Down-cored variation of PCB concentrations was complex. Higher concentrations besides the two peaks being the same as PAHs were detected from 4 to 8 cm, depositing from 1980 to 1992, which probably resulted from the disposal of the out-dated PCB-containing equipment. The average Cl percentage of PCBs detected was similar to that of the mixture of Aroclor 1254 and 1242, suggesting they might origin from the dielectrical and heat-transfer fluid. The total organic carbon (TOC) content played a prevalent role in the adsorption of high molecular weight PAHs (>= 4-ring), while no obvious relationship among total PCBs, the concentration of congeners, and TOC was found.
Resumo:
The composition and distribution of aliphatic (n-alkanes) and polyaromatic hydrocarbons (PAHs) were measured for the surface sediments collected at 25 sites from Jiaozhou Bay, Qingdao, China. Total n-alkanes and PAH concentrations ranged from 0.5 to 8.2 mu g/gdw and 0.02 to 2.2 mu g/gdw, respectively, and the distribution of both n-alkanes and PAHs showed large spatial variations in the bay. The distribution of PAHs in the sediments was predominated by the three or more ring compounds. High hydrocarbon levels were generally found in the areas associated with high anthropogenic impact and port activities in the bay. The calculated hydrocarbon indexes suggest that petroleum contamination was the main source of n-alkanes, while both pyrolytic and petrogenic sources contributed PAHs to the surface sediments of Jiaozhou Bay. In comparison to other polluted coastal sediments, the level of contamination from both aliphatic hydrocarbons and PAHs in Jiaozhou Bay sediments is relatively low at the present time. (c) 2005 Elsevier Ltd. All rights reserved.