983 resultados para Hydraulic lime


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-lapse geophysical data acquired during transient hydrological experiments are being increasingly employed to estimate subsurface hydraulic properties at the field scale. In particular, crosshole ground-penetrating radar (GPR) data, collected while water infiltrates into the subsurface either by natural or artificial means, have been demonstrated in a number of studies to contain valuable information concerning the hydraulic properties of the unsaturated zone. Previous work in this domain has considered a variety of infiltration conditions and different amounts of time-lapse GPR data in the estimation procedure. However, the particular benefits and drawbacks of these different strategies as well as the impact of a variety of key and common assumptions remain unclear. Using a Bayesian Markov-chain-Monte-Carlo stochastic inversion methodology, we examine in this paper the information content of time-lapse zero-offset-profile (ZOP) GPR traveltime data, collected under three different infiltration conditions, for the estimation of van Genuchten-Mualem (VGM) parameters in a layered subsurface medium. Specifically, we systematically analyze synthetic and field GPR data acquired under natural loading and two rates of forced infiltration, and we consider the value of incorporating different amounts of time-lapse measurements into the estimation procedure. Our results confirm that, for all infiltration scenarios considered, the ZOP GPR traveltime data contain important information about subsurface hydraulic properties as a function of depth, with forced infiltration offering the greatest potential for VGM parameter refinement because of the higher stressing of the hydrological system. Considering greater amounts of time-lapse data in the inversion procedure is also found to help refine VGM parameter estimates. Quite importantly, however, inconsistencies observed in the field results point to the strong possibility that posterior uncertainties are being influenced by model structural errors, which in turn underlines the fundamental importance of a systematic analysis of such errors in future related studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ground-penetrating radar (GPR) has the potential to provide valuable information on hydrological properties of the vadose zone because of their strong sensitivity to soil water content. In particular, recent evidence has suggested that the stochastic inversion of crosshole GPR data within a coupled geophysical-hydrological framework may allow for effective estimation of subsurface van-Genuchten-Mualem (VGM) parameters and their corresponding uncertainties. An important and still unresolved issue, however, is how to best integrate GPR data into a stochastic inversion in order to estimate the VGM parameters and their uncertainties, thus improving hydrological predictions. Recognizing the importance of this issue, the aim of the research presented in this thesis was to first introduce a fully Bayesian inversion called Markov-chain-Monte-carlo (MCMC) strategy to perform the stochastic inversion of steady-state GPR data to estimate the VGM parameters and their uncertainties. Within this study, the choice of the prior parameter probability distributions from which potential model configurations are drawn and tested against observed data was also investigated. Analysis of both synthetic and field data collected at the Eggborough (UK) site indicates that the geophysical data alone contain valuable information regarding the VGM parameters. However, significantly better results are obtained when these data are combined with a realistic, informative prior. A subsequent study explore in detail the dynamic infiltration case, specifically to what extent time-lapse ZOP GPR data, collected during a forced infiltration experiment at the Arrenaes field site (Denmark), can help to quantify VGM parameters and their uncertainties using the MCMC inversion strategy. The findings indicate that the stochastic inversion of time-lapse GPR data does indeed allow for a substantial refinement in the inferred posterior VGM parameter distributions. In turn, this significantly improves knowledge of the hydraulic properties, which are required to predict hydraulic behaviour. Finally, another aspect that needed to be addressed involved the comparison of time-lapse GPR data collected under different infiltration conditions (i.e., natural loading and forced infiltration conditions) to estimate the VGM parameters using the MCMC inversion strategy. The results show that for the synthetic example, considering data collected during a forced infiltration test helps to better refine soil hydraulic properties compared to data collected under natural infiltration conditions. When investigating data collected at the Arrenaes field site, further complications arised due to model error and showed the importance of also including a rigorous analysis of the propagation of model error with time and depth when considering time-lapse data. Although the efforts in this thesis were focused on GPR data, the corresponding findings are likely to have general applicability to other types of geophysical data and field environments. Moreover, the obtained results allow to have confidence for future developments in integration of geophysical data with stochastic inversions to improve the characterization of the unsaturated zone but also reveal important issues linked with stochastic inversions, namely model errors, that should definitely be addressed in future research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The overarching goal of the proposed research was to evaluate the hydraulic performance of twenty two (22) fish-passage structures located in close proximity to bridges in western Iowa and within the HCA (Hungry Canyon Alliance) territory. Such structures include riprap weirs, fish ladders and grouted ripraps. The hydraulic performance of the aforementioned structures was evaluated via detailed field tests for a range of flow conditions relevant to fish migration through bridge waterways in different streams in western Iowa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This experiment was carried out under greenhouse conditions with soil pots during 210 days, to evaluate the effect of calcitic papermill lime-sludge application (at the rates 0, 773, 1.547, and 2.320 mg kg-1 or respective equivalents to control, 2, 4, and 6 t ha-1), on chemical composition of soil leachate and its effects on eucalypt growth and yield. Highest soil leachate pH, SO4, and Na concentrations occurred in the 4 and 6 t ha-1 treatments. Soil leachate nitrate concentrations decreased with increasing lime-sludge rate. Soil leachate phosphate remained low (below the detection limit) in all treatments until 120 days, while the concentration increased in the lime-sludge treatments at 210 days (last sampling) in about 600 mg L-1. Lime-sludge decreased leachate Mg concentration, but had no significant effect among rates. Soil leachate Ca, K, B, Cu, Fe, and Zn did not change significantly for any lime-sludge application rates. The maximum NO3, Ca, Mg, K, and Na concentrations in the soil leachate occurred at 60 days after lime-sludge application (leaching equivalent to 1 pore volume), but for pH and SO4, the maximum occurred at 210 days (leaching equivalent to 4 pore volumes). Lime-sludge application decreased the concentration of exchangeable Al in the soil. Plant diameter growth and dry matter yield were increased with increasing lime-sludge rate. Beneficial effects on mineral nutrition (P, K, Ca, B, and Zn) of eucalypts were also obtained by the application of 4 and 6 t ha-1 of lime-sludge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liming acid soils is considered to assure the availability of Mo in crops. Additionally, in peanuts (Arachis hypogaea L.) the positive response to liming is associated to a better supply of Ca+2, Mo for the nitrogenase-complex activity, and other non-nitrogen fixing activities of the crop. This study was thus undertaken to assess the effect of lime, Mo, and the lime-Mo interaction on peanut crop, on an acid Ultisol at the Mococa Experimental Station, Instituto Agronômico, São Paulo State, Brazil, from 1987 to 1990. A randomized complete block design with four replications, in a 4 x 4 factorial arrangement, was used in the study. The factors included four lime rates (0, 2, 4, and 6 t ha-1) broadcast and incorporated into the soil, and Mo (0, 100, 200, and 300 g ha-1) as (NH4)2MoO4 applied as seed dressing. Lime was applied once at the beginning of the study while Mo was applied at every planting. Peanut seed cv 'tatu' was used. Significant increase in peanut kernel yield with liming was only evident in the absence of Mo, whereas the peanut response to Mo was observed in two out of the three harvests. A higher yield response (28 % increase) was found when Mo was applied without liming. Soil molybdenum availability, as indicated by plant leaf analysis, increased significantly when lime was applied. Molybdenum fertilization led to higher leaf N content, which in turn increased peanut yield in treatments with smaller lime doses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A software for the calculation of unsaturated soil hydraulic conductivity K(theta) is presented for commonly used methods found in the literature, based on field experiments in which a soil profile is submitted to water infiltration followed by internal drainage. The software is available at: dourado@esalq.usp.br.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the best cultivation methods of orchids, in particular of the genus Phalaenopsis, liming is a common practice. The objective of this study was to evaluate the influence of lime rates (0.0; 1.0; 2.0; 3.0; 4.0; and 5.0 g dm-3 of substrate) applied to the cultivation substrate (xaxim) on the growth of Epidendrum ibaguense seedlings. In a greenhouse, 1-L plastic pots filled with 0.8 dm³ of xaxim were irrigated such that no leachate was lost during the experiment. N, P, K, Ca, Mg, S, Fe, Zn, B, and Mn contents in roots, stems and leaves were measured. Leachate was collected by applying a sufficient water volume to obtain 25 mL from each pot. Fourteen days after lime application of 3 g dm-3, the pH of the collected leachate reached values above 7 and a value of 6.29 with the highest lime rate at the end of the experiment. The lime rate did not influence plant height, probably due to a Zn deficiency at high pH levels and a Ca deficiency in the control. Nevertheless, there was a large increase in leaf production, for number as well as for dry matter mass. There was no statistical difference between treatments in root dry matter production. Maximum dry matter production was obtained at a lime rate of 4.09 g dm-3. Zinc concentrations diminished linearly with increasing lime rates; the concentrations in all treatments were below the levels suggested as adequate in the literature (25-200 mg kg-1). Nutrient concentrations in leaves indicated deficiency of N, S, and B at the highest lime rates (4.0 and 5.0 g dm-3), and of Ca in the treatment without liming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An accurate estimation of hydraulic fluxes in the vadose zone is essential for the prediction of water, nutrient and contaminant transport in natural systems. The objective of this study was to simulate the effect of variation of boundary conditions on the estimation of hydraulic properties (i.e. water content, effective unsaturated hydraulic conductivity and hydraulic flux) in a one-dimensional unsaturated flow model domain. Unsaturated one-dimensional vertical water flow was simulated in a pure phase clay loam profile and in clay loam interlayered with silt loam distributed according to the third iteration of the Cantor Bar fractal object Simulations were performed using the numerical model Hydrus 1D. The upper and lower pressure heads were varied around average values of -55 cm for the near-saturation range. This resulted in combinations for the upper and lower constant head boundary conditions, respectively, of -50 and -60 cm, -40 and -70 cm, -30 and -80 cm, -20 and -90 cm, and -10 and -100 cm. For the drier range the average head between the upper and lower boundary conditions was set to -550 cm, resulting in the combinations -500 and -600 cm, -400 and -700 cm, -300 and -800 cm, -200 and -900 cm, and -100 and -1,000 cm, for upper and lower boundary conditions, respectively. There was an increase in water contents, fluxes and hydraulic conductivities with the increase in head difference between boundary conditions. Variation in boundary conditions in the pure phase and interlayered one-dimensional profiles caused significant deviations in fluxes, water contents and hydraulic conductivities compared to the simplest case (a head difference between the upper and lower constant head boundaries of 10 cm in the wetter range and 100 cm in the drier range).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lime and gypsum influence nutrient availability and uptake, as well as the content of organic acids in the aerial plant parts. These changes, quantified by plant analysis of soluble nutrients, may potentiate the effect of soil amendment, ensuring the sustainability of the no-tillage system. In this sense the effect of lime and gypsum surface application on the content of water-soluble nutrients in peanut and oat residues was evaluated. The experiment was conducted on an Oxisol in Botucatu (SP) in the growing seasons 2004/2005 and 2005/2006. It was arranged in a randomized block design in split plots with four replications, where lime rates represented the plots and presence or absence of gypsum application the subplots. Peanut was grown in summer and white oat in the winter in the entire experimental area. Gypsum applied to peanut increased soluble Ca only in the first season, due to the short period between product application and determination of soluble nutrient contents in the plant extract. Liming of peanut and oat increased soluble Ca, Mg, K contents, did not alter Cu content and reduced Zn, Mn and Fe contents in both years of cultivation. Gypsum on the other hand reduced the electrical conductivity of peanut (2004/2005 and 2005/2006) and white oat (2004/2005).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for determining soil hydraulic properties of a weathered tropical soil (Oxisol) using a medium-sized column with undisturbed soil is presented. The method was used to determine fitting parameters of the water retention curve and hydraulic conductivity functions of a soil column in support of a pesticide leaching study. The soil column was extracted from a continuously-used research plot in Central Oahu (Hawaii, USA) and its internal structure was examined by computed tomography. The experiment was based on tension infiltration into the soil column with free outflow at the lower end. Water flow through the soil core was mathematically modeled using a computer code that numerically solves the one-dimensional Richards equation. Measured soil hydraulic parameters were used for direct simulation, and the retention and soil hydraulic parameters were estimated by inverse modeling. The inverse modeling produced very good agreement between model outputs and measured flux and pressure head data for the relatively homogeneous column. The moisture content at a given pressure from the retention curve measured directly in small soil samples was lower than that obtained through parameter optimization based on experiments using a medium-sized undisturbed soil column.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leptosols and Regosols are soils with a series of restrictions for use, mainly related to the effective depth, which have been poorly studied in Brazil. These soils, when derived from sedimentary rocks should be treated with particular care to avoid environmental damage such as aquifer contamination. The purpose of this study was to verify the behavior of hydraulic conductivity and water retention capacity in profiles of Leptosols and Regosols derived from sandstone of the Caturrita formation in Rio Grande do Sul state. The morphology, particle size distribution, porosity, soil density (Ds), saturated hydraulic conductivity (Ks), basic water infiltration in the field (BI) and water retention were determined in soil and saprolite samples of six soil profiles. High Ds, low macroporosity and high microporosity were observed in the profiles, resulting in a low Ks and BI, even under conditions of sandy texture and a highly fractured saprolite layer. The variation coefficients of data of Ks and BI were high among the studied profiles and between replications of a same profile. Water retention of the studied soils was higher in Cr layers than in the A horizons and the volume of plant-available water greater and variable among A horizons and Cr layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the main problems faced by humanity is pollution caused by residues resulting from the production and use of goods, e.g, sewage sludge. Among the various alternatives for its disposal, the agricultural use seems promising. The purpose of this study was to evaluate the hydraulic conductivity and interaction of soil with sandy-silty texture, classified as Spodosols, from the Experimental Station Itapirema - IPA, in Goiana, state of Pernambuco, in mixtures with sewage sludge from the Mangueira Sewage Treatment Station, in the city of Recife, Pernambuco at rates of 25, 50 and 75 Mg ha-1. Tests were conducted to let water percolate the natural saturated soil and soil-sludge mixtures to characterize their physical, chemical, and microstructural properties as well as hydraulic conductivity. Statistical data analysis showed that the presence of sewage sludge in soils leads to an increase of the < 0.005 mm fraction, reduction in real specific weight and variation in optimum moisture content from 11.60 to 12.90 % and apparent specific dry weight from 17.10 and 17.50 kN m-3. In the sludge-soil mixture, the quartz grains were covered by sludge and filling of the empty soil macropores between grains. There were changes in the chemical characteristics of soil and effluent due to sewage sludge addition and a small decrease in hydraulic conductivity. The results indicate the possibility that soil acidity influenced the concentrations of the elements found in the leachate, showing higher levels at higher sludge doses. It can be concluded that the leaching degree of potentially toxic elements from the sewage sludge treatments does not harm the environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the assumption that silicate application can raise soil P availability for crops, the aim of this research was to compare the effect of silicate application on soil P desorption with that of liming, in evaluations based on two extractors and plant growth. The experiment was carried out in randomized blocks with four replications, in a 3 × 3 × 5 factorial design, in which three soil types, three P rates, and four soil acidity correctives were evaluated in 180 experimental plots. Trials were performed in a greenhouse using corn plants in 20-dm³ pots. Three P rates (0, 50 and 150 mg dm-3) were applied in the form of powder triple superphosphate and the soil was incubated for 90 days. After this period, soil samples were collected for routine chemical analysis and P content determination by the extraction methods resin, Mehlich-1 and remaining P. Based on the results, acidity correctives were applied at rates calculated for base saturation increased to 70 %, with subsequent incubation for 60 more days, when P content was determined again. The acidity correctives consisted of: dolomitic lime, steelmaking slag, ladle furnace slag, and wollastonite. Therefore, our results showed that slags raised the soil P content more than lime, suggesting a positive correlation between P and Si in soil. Silicon did not affect the extractor choice since both Mehlich-1 and resin had the same behavior regarding extracted P when silicon was applied to the soil. For all evaluated plant parameters, there was significant interaction between P rates and correctives; highest values were obtained with silicate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The area under the no-tillage system (NT) has been increasing over the last few years. Some authors indicate that stabilization of soil physical properties is reached after some years under NT while other authors debate this. The objective of this study was to determine the effect of the last crop in the rotation sequence (1st year: maize, 2nd year: soybean, 3rd year: wheat/soybean) on soil pore configuration and hydraulic properties in two different soils (site 1: loam, site 2: sandy loam) from the Argentinean Pampas region under long-term NT treatments in order to determine if stabilization of soil physical properties is reached apart from a specific time in the crop sequence. In addition, we compared two procedures for evaluating water-conducting macroporosities, and evaluated the efficiency of the pedotransfer function ROSETTA in estimating the parameters of the van Genuchten-Mualem (VGM) model in these soils. Soil pore configuration and hydraulic properties were not stable and changed according to the crop sequence and the last crop grown in both sites. For both sites, saturated hydraulic conductivity, K0, water-conducting macroporosity, εma, and flow-weighted mean pore radius, R0ma, increased from the 1st to the 2nd year of the crop sequence, and this was attributed to the creation of water-conducting macropores by the maize roots. The VGM model adequately described the water retention curve (WRC) for these soils, but not the hydraulic conductivity (K) vs tension (h) curve. The ROSETTA function failed in the estimation of these parameters. In summary, mean values of K0 ranged from 0.74 to 3.88 cm h-1. In studies on NT effects on soil physical properties, the crop effect must be considered.