984 resultados para Humic Acid
Resumo:
The history of glacial advances and retreats of the East Antarctic ice sheet during the Holocene is not well-known, due to limited field evidence in both the marine and terrestrial realm. A 257-cm-long sediment core was recovered from a marine inlet in the Rauer Group, East Antarctica, 1.8 km in front of the present ice-sheet margin. Radiocarbon dating and lithological characteristics reveal that the core comprises a complete marine record since 4500 yr. A significant ice-sheet expansion beyond present ice margins therefore did not occur during this period.
Resumo:
Un incremento de la demanda del agua, junto con el aumento de la contaminación, ha provocado que hoy en día la reutilización de las aguas depuradas sea necesaria, pero la reutilización de aguas debe garantizar y minimizar los posibles riesgos sanitarios y medioambientales que su práctica pueda provocar. En España estos parámetros se encuentran regulados por el RD 1620/2007 relativo al régimen jurídico de la reutilización de las aguas depuradas. Las aguas regeneradas son aguas que ya han sido sometidas a un tratamiento de depuración, y a las cuales se aplica un posterior tratamiento adicional o complementario que permita adecuar su calidad al uso al que vaya a destinarse. Siendo requeridos para los distintos reúsos procesos de desinfección, uno de los principales sistemas utilizados es el cloro, debido a su sencilla aplicación y costos bajos, sin tomar en cuenta la posible formación de compuestos organohalogenados potencialmente cancerígenos. Es por esto que surge la necesidad de aplicar distintos sistemas de oxidación objeto de estudio en esta tesis, como el dióxido de cloro estabilizado, ozono y los procesos avanzados de oxidación (Advanced Oxidation Processes, AOP), ozono/peróxido y uv/peróxido. En esta tesis se investiga los rendimientos que pueden alcanzar estos sistemas en la eliminación de los ácidos húmicos y los fenoles, siendo las principales sustancias formadoras de subproductos de la desinfección, así mismo, se considera necesario garantizar la desinfección del agua a través del estudio de tres grupos de microrganismos, los coliformes totales, e. coli y enterococos, siendo un punto importante el posible recrecimiento microbiológico debido a una desinfección escasa, por la permanencia en el agua de los compuestos antes mencionados, o por alguna fuente de alimento que pudieran encontrar en el sistema de distribución. Lo más importante será la calidad que se pueda alcanzar con estos desinfectantes, con el fin de obtener agua para los distintos reúsos que existen en la actualidad. Y así no limitar los alcances que puede tener la reutilización de las aguas residuales. Basándose en lo antes mencionado se procedió a realizar la caracterización del agua del rio Manzanares, con el fin de determinar la cantidad de ácidos húmicos disueltos y fenoles, obteniendo valores bajos, se decidió incorporar a las muestras de rio 5 mg/L de estos compuestos, con el fin de observar de que manera podrían interferir en la desinfección de esta agua. De esta forma se logran obtener resultados óptimos de los sistemas de desinfección estudiados, siendo el Ozono un oxidante eficiente en la desinfección de los microrganismos y en la eliminación de ácidos húmicos y fenoles con tiempos de contacto cortos, mostrando deficiencias al permitir el recrecimiento de los coliformes totales. Del sistema de oxidación avanzada UV/Peróxido se determino como un eficiente desinfectante para garantizar la inexistencia de rebrotes, al paso del tiempo. Así mismo se concluye que tiene buenos rendimientos en la eliminación del ácido húmico y los fenoles. An increase in water demand, coupled with increasing pollution, has caused today reuse of treated water is necessary, but must ensure water reuse and minimize potential health and environmental risks that their practice is cause. In Spain these parameters are regulated by Royal Decree 1620/2007 on the legal regime of the reuse of treated water. The reclaimed water is water that has already been subjected to a depuration treatment, which is applied as a subsequent further treatment that will bring quality to the use to which is to be delivered. As required for various reuses disinfection processes, one of the main systems used is chlorine, due to its simple implementation and low costs, without taking into account the possible formation of potentially carcinogenic halogenated organic compounds. That is why there is a need to apply different oxidation systems studied in this thesis, as stabilized chlorine dioxide, ozone and advanced oxidation processes (AOP), ozone/peroxide and UV/peroxide. This thesis investigates the rates can reach these systems in removing humic acids and phenols, the main substances forming disinfection byproducts, likewise, it is considered necessary to ensure water disinfection through the study of three groups of microorganisms, total coliform, e. coli and enterococci, the important point being a possible regrowth due to microbiological disinfection scarce, the water remaining on the aforementioned compounds, or a food source which may be found in the distribution system. The most important quality is that achievable with these disinfectants, with the water to obtain various reuses that exist today. And thus not limit the scope that can be reuse of wastewater. Based on the above we proceeded to perform characterization Manzanares river water, in order to determine the quantity of dissolved humic acids and phenols, obtaining low values, it was decided to incorporate river samples 5 mg / L of these compounds, in order to observe how they might interfere with the disinfection of the water. Thus optimum results are achieved for disinfection systems studied, being efficient ozone oxidant in the disinfection of microorganisms and the removal of humic acids and phenols with short contact times, showing gaps to allow regrowth total coliforms. Advanced oxidation system UV / peroxide were determined as an efficient disinfectant to ensure the absence of volunteers, the passage of time. Also it is concluded that has good yields in removing humic acid and phenols.
Resumo:
Forty-three core samples from Sites 511 through 514 of DSDP Leg 71 were analyzed geochemically. The black shales at the bottom of Hole 511, in the basin province of the Falkland Plateau, contain an average of 1590 ppm extractable organic matter (EOM) and 120 ppm hydrocarbons. Whereas molecular type-carbon number distributions of mono- and polynuclear aromatic hydrocarbons and their sulphur and oxygen analogues in the black shale "aromatic hydrocarbon" fractions are very similar to those of many crude oils, other data - gas chromatography (GC) fingerprint, pyrolysis GC, visual kerogen analysis, H/C ratio - suggest the black shale section is thermally immature. Together, these observations imply that many of the hydrocarbons were deposited with the original sediments or are diagenetic products of other biological compounds. Pyrograms of the humic acid and kerogen fractions from the black shale interval are typical of geopolymers derived from marine algal material. It appears that these humic acids and kerogens are derived from the same lipid stock.
Resumo:
Pesticides leaching through a soil profile will be exposed to changing environmental sorption and desorption conditions as different horizons with distinct physical and chemical properties are encountered. Soil cores were taken from a clay soil profile and samples taken from 0.0 to 0.3 m (surface), 1.0-1.3 m (mid) and 2.7-3.0 m (deep) and treated with the chloroacetanilide herbicide, acetochlor. Freundlich isotherms revealed that sorption and desorption behaviour varied with each depth sampled. As soil depth increased, the extent and strength of sorption decreased, indicating that the potential for leaching was increased in the subsoils compared with the surface soil. Hysteresis was evident at each of the three depths sampled, although no significant correlations between soil properties and the hysteresis coefficients were evident. Desorption studies using soil fractions with diameters of > 2000, 250-2000, 53-250, 20-53, 2-20, 0-2 and 0-1 mum separated from each of the three soil depths showed that differential desorption kinetics occurred and that the retention of acetochlor significantly correlated (R-2 = 0.998) with organic matter content. A greater understanding of the influence of soil components on the overall sorption and desorption potential of surface and subsurface soils is required to allow accurate prediction of acetochlor retention in the soil. In addition, it is likely that the proportion of each size fraction in a soil horizon would influence acetochlor bioavailability and movement to groundwater.
Resumo:
The presences of heavy metals, organic contaminants and natural toxins in natural water bodies pose a serious threat to the environment and the health of living organisms. Therefore, there is a critical need to identify sustainable and environmentally friendly water treatment processes. In this dissertation, I focus on the fundamental studies of advanced oxidation processes and magnetic nano-materials as promising new technologies for water treatments. Advanced oxidation processes employ reactive oxygen species (ROS) which can lead to the mineralization of a number of pollutants and toxins. The rates of formation, steady-state concentrations, and kinetic parameters of hydroxyl radical and singlet oxygen produced by various TiO2 photocatalysts under UV or visible irradiations were measured using selective chemical probes. Hydroxyl radical is the dominant ROS, and its generation is dependent on experimental conditions. The optimal condition for generation of hydroxyl radical by of TiO2 coated glass microspheres is studied by response surface methodology, and the optimal conditions are applied for the degradation of dimethyl phthalate. Singlet oxygen (1O2) also plays an important role for advanced processes, so the degradation of microcystin-LR by rose bengal, an 1O2 sensitizer was studied. The measured bimolecular reaction rate constant between MC-LR and 1O2 is ∼ 106 M-1 s-1 based on competition kinetics with furfuryl alcohol. The typical adsorbent needs separation after the treatment, while magnetic iron oxides can be easily removed by a magnetic field. Maghemite and humic acid coated magnetite (HA-Fe3O4) were synthesized, characterized and applied for chromium(VI) removal. The adsorption of chromium(VI) by maghemite and HA-Fe3O4 follow a pseudo-second-order kinetic process. The adsorption of chromium(VI) by maghemite is accurately modeled using adsorption isotherms, and solution pH and presence of humic acid influence adsorption. Humic acid coated magnetite can adsorb and reduce chromium(VI) to non-toxic chromium (III), and the reaction is not highly dependent on solution pH. The functional groups associated with humic acid act as ligands lead to the Cr(III) complex via a coupled reduction-complexation mechanism. Extended X-ray absorption fine structure spectroscopy demonstrates the Cr(III) in the Cr-loaded HA-Fe 3O4 materials has six neighboring oxygen atoms in an octahedral geometry with average bond lengths of 1.98 Å.
Resumo:
The Rauer Group is an archipelago in Prydz Bay, East Antarctica. The ice-free islands and the surrounding shallow marine areas provide valuable archives for the reconstruction of the late Pleistocene and Holocene environmental and climatic history of the region. Two sediment records from two marine inlets of Rauer Group have been studied for their sedimentological, geochemical, and biological characteristics. Radiocarbon ages from one of the inlets indicate ice-free conditions within the last glacial cycle, probably during the second half of Marine Isotope Stage 3. Subsequent ice sheet coverage of Rauer Group during the Last Glacial Maxiumum (LGM) can be inferred from a till layer recovered in one of the basins. The inlets became ice-free prior to 11,200 cal yr BP, when biogenic sedimentation started. Deglacial processes in the catchments, however, influenced the inlets until ~9200 cal. yr BP as evidenced by the input of minerogenic material. Marine productivity under relatively open water conditions indicates an early Holocene climate optimum until 8200 cal. yr BP, which is followed by a cooler period with increased sea ice. Warmer conditions are inferred for the mid Holocene, when both basins experienced an input of freshwater between ~5700-3500 cal. yr BP, probably due to ice-sheet melting and increased precipitation on the islands. Neoglacial cooling in the late Holocene since c. 3500 cal yr BP is reflected by an increase in sea ice in both inlets.
Resumo:
The rapid development of nanotechnology and wider applications of engineered nanomaterials (ENMs) in the last few decades have generated concerns regarding their environmental and health risks. After release into the environment, ENMs undergo aggregation, transformation, and, for metal-based nanomaterials, dissolution processes, which together determine their fate, bioavailability and toxicity to living organisms in the ecosystems. The rates of these processes are dependent on nanomaterial characteristics as well as complex environmental factors, including natural organic matter (NOM). As a ubiquitous component of aquatic systems, NOM plays a key role in the aggregation, dissolution and transformation of metal-based nanomaterials and colloids in aquatic environments.
The goal of this dissertation work is to investigate how NOM fractions with different chemical and molecular properties affect the dissolution kinetics of metal oxide ENMs, such as zinc oxide (ZnO) and copper oxide (CuO) nanoparticles (NPs), and consequently their bioavailability to aquatic vertebrate, with Gulf killifish (Fundulus grandis) embryos as model organisms.
ZnO NPs are known to dissolve at relatively fast rates, and the rate of dissolution is influenced by water chemistry, including the presence of Zn-chelating ligands. A challenge, however, remains in quantifying the dissolution of ZnO NPs, particularly for time scales that are short enough to determine rates. This dissertation assessed the application of anodic stripping voltammetry (ASV) with a hanging mercury drop electrode to directly measure the concentration of dissolved Zn in ZnO NP suspensions, without separation of the ZnO NPs from the aqueous phase. Dissolved zinc concentration measured by ASV ([Zn]ASV) was compared with that measured by inductively coupled plasma mass spectrometry (ICP-MS) after ultracentrifugation ([Zn]ICP-MS), for four types of ZnO NPs with different coatings and primary particle diameters. For small ZnO NPs (4-5 nm), [Zn]ASV was 20% higher than [Zn]ICP-MS, suggesting that these small NPs contributed to the voltammetric measurement. For larger ZnO NPs (approximately 20 nm), [Zn]ASV was (79±19)% of [Zn]ICP-MS, despite the high concentrations of ZnO NPs in suspension, suggesting that ASV can be used to accurately measure the dissolution kinetics of ZnO NPs of this primary particle size.
Using the ASV technique to directly measure dissolved zinc concentration, we examined the effects of 16 different NOM isolates on the dissolution kinetics of ZnO NPs in buffered potassium chloride solution. The observed dissolution rate constants (kobs) and dissolved zinc concentrations at equilibrium increased linearly with NOM concentration (from 0 to 40 mg-C L-1) for Suwannee River humic acid (SRHA), Suwannee River fulvic acid and Pony Lake fulvic acid. When dissolution rates were compared for the 16 NOM isolates, kobs was positively correlated with certain properties of NOM, including specific ultraviolet absorbance (SUVA), aromatic and carbonyl carbon contents, and molecular weight. Dissolution rate constants were negatively correlated to hydrogen/carbon ratio and aliphatic carbon content. The observed correlations indicate that aromatic carbon content is a key factor in determining the rate of NOM-promoted dissolution of ZnO NPs. NOM isolates with higher SUVA were also more effective at enhancing the colloidal stability of the NPs; however, the NOM-promoted dissolution was likely due to enhanced interactions between surface metal ions and NOM rather than smaller aggregate size.
Based on the above results, we designed experiments to quantitatively link the dissolution kinetics and bioavailability of CuO NPs to Gulf killifish embryos under the influence of NOM. The CuO NPs dissolved to varying degrees and at different rates in diluted 5‰ artificial seawater buffered to different pH (6.3-7.5), with or without selected NOM isolates at various concentrations (0.1-10 mg-C L-1). NOM isolates with higher SUVA and aromatic carbon content (such as SRHA) were more effective at promoting the dissolution of CuO NPs, as with ZnO NPs, especially at higher NOM concentrations. On the other hand, the presence of NOM decreased the bioavailability of dissolved Cu ions, with the uptake rate constant negatively correlated to dissolved organic carbon concentration ([DOC]) multiplied by SUVA, a combined parameter indicative of aromatic carbon concentration in the media. When the embryos were exposed to CuO NP suspension, changes in their Cu content were due to the uptake of both dissolved Cu ions and nanoparticulate CuO. The uptake rate constant of nanoparticulate CuO was also negatively correlated to [DOC]×SUVA, in a fashion roughly proportional to changes in dissolved Cu uptake rate constant. Thus, the ratio of uptake rate constants from dissolved Cu and nanoparticulate CuO (ranging from 12 to 22, on average 17±4) were insensitive to NOM type or concentration. Instead, the relative contributions of these two Cu forms were largely determined by the percentage of CuO NP that was dissolved.
Overall, this dissertation elucidated the important role that dissolved NOM plays in affecting the environmental fate and bioavailability of soluble metal-based nanomaterials. This dissertation work identified aromatic carbon content and its indicator SUVA as key NOM properties that influence the dissolution, aggregation and biouptake kinetics of metal oxide NPs and highlighted dissolution rate as a useful functional assay for assessing the relative contributions of dissolved and nanoparticulate forms to metal bioavailability. Findings of this dissertation work will be helpful for predicting the environmental risks of engineered nanomaterials.
Resumo:
Here we present a tephrostratigraphic record (core Co1202) recovered from the northeastern part of Lake Ohrid (Republics of Macedonia and Albania) reaching back to Marine Isotope Stage (MIS) 6. Overall ten horizons (OT0702-1 to OT0702-10) containing volcanic tephra have been recognised throughout the 14.94 m long sediment succession. Four tephra layers were visible at macroscopic inspection (OT0702-4, OT0702-6, OT0702-8 and OT0702-9), while the remaining six are cryptotephras (OT0702-1, OT0702-2, OT0702-3, OT0702-5, OT0702-7 and OT0702-10) identified from peaks in K, Zr and Sr intensities, magnetic susceptibility measurements, and washing and sieving of the sediments. Glass shards of tephra layers and cryptotephras were analysed with respect to their major element composition, and correlated to explosive eruptions of Italian volcanoes. The stratigraphy and the major element composition of tephra layers and cryptotephras allowed the correlation of OT0702-1 to AD 472 or AD 512 eruptions of Somma-Vesuvius, OT0702-2 to the FL eruption of Mount Etna, OT0702-3 to the Mercato from Somma-Vesuvius, OT0702-4 to SMP1-e/Y-3 eruption from the Campi Flegrei caldera, OT0702-5 to the Codola eruption (Somma-Vesuvius or Campi Flegrei), OT0702-6 to the Campanian Ignimbrite/Y-5 from the Campi Flegrei caldera, OT0702-7 to the Green Tuff/Y-6 eruption from Pantelleria Island, OT0702-8 to the X-5 eruption probably originating from the Campi Flegrei caldera, OT0702-9 to the X-6 eruption of generic Campanian origin, and OT0702-10 to the P-11 eruption from Pantelleria Island. The fairly well-known ages of these tephra layers and parent eruptions provide new data on the dispersal and deposition of these tephras and, furthermore, allow the establishment of a chronological framework for core Co1202 for a first interpretation of major sedimentological changes.
Resumo:
The biotic potential of the benthic filter feeding freshwater bivalve mollusc Lamellidens marginalis (Lamarck) influencing the nutrient dynamics of the bottom sediments of the lake by means of biodeposition and bioturbation activities were analysed using a lake mesocosm experiment. Five control as well as experimental mesocosms was maintained up to 60 days (d). The factors studied included the percentage of water content of the sediment, percentage of total nitrogen, percentage of organic matter along with the total phosphorus and humic acid content. While total phosphorus and humic acid content of the experimental mesocosoms showed gradual and significant increases from 30d of the experiment to reach the maximum levels after 60d, the percentage of organic matter registered significant increases right from 15d onwards and reached the maximum values after 60d. On the other hand, while the percentage of water content of the sediments of the experimental mesocosoms increased only up to 30d experiment, percentage of nitrogen was increased during the first half and at the fag end of the experiment. All the investigated ecological factors were found to be significantly influenced by the presence of L. marginalis in the experimental mesocosms. The study indicated that the mussel influence the nutrient dynamics of the inhabitant ecosystem through the processes of excretion, biodeposition of pseudofaeces and faeces, along with the bioturbation of the sediments brought about by their ploughing movements. KEYWORDS: freshwater mussel, Lamellidens marginalis, bioturbation, biodeposition, mesocosms.
Resumo:
Most commercially available reverse osmosis (RO) and nanofiltration (NF) membranes are based on the thin film composite (TFC) aromatic polyamide membranes. However, they have several disadvantages including low resistance to fouling, low chemical and thermal stabilities and limited chlorine tolerance. To address these problems, advanced RO/NF membranes are being developed from polyimides for water and wastewater treatments. The following three projects have resulted from my research. (1) Positively charged and solvent resistant NF membranes. The use of solvent resistant membranes to facilitate small molecule separations has been a long standing industry goal of the chemical and pharmaceutical industries. We developed a solvent resistant membrane by chemically cross-linking of polyimide membrane using polyethylenimine. This membrane showed excellent stability in almost all organic solvents. In addition, this membrane was positively charged due to the amine groups remaining on the surface. As a result, high efficiency (> 95%) and selectivity for multivalent heavy metal removal was achieved. (2) Fouling resistant NF membranes. Antifouling membranes are highly desired for “all” applications because fouling will lead to higher energy demand, increase of cleaning and corresponding down time and reduced life-time of the membrane elements. For fouling prevention, we designed a new membrane system using a coating technique to modify membrane surface properties to avoid adsorption of foulants like humic acid. A layer of water-soluble polymer such as polyvinyl alcohol (PVA), polyacrylic acid (PAA), polyvinyl sulfate (PVS) or sulfonated poly(ether ether ketone) (SPEEK), was adsorbed onto the surface of a positively charged membrane. The resultant membranes have a smooth and almost neutrally charged surface which showed better fouling resistance than both the positively charged NF membranes and commercially available negatively charged NTR-7450 membrane. In addition, these membranes showed high efficiency for removal of multivalent ions (> 95% for both cations and anions). Therefore, these antifouling surfaces can be potentially used for water softening, water desalination and wastewater treatment in a membrane bioreactor (MBR) process. (3) Thermally stable RO membranes. Commercial RO membranes cannot be used at temperature higher than 45°C due to the use of polysulfone substrate, which often limits their applications in industries. We successfully developed polyimides as the membrane substrate for thermally stable RO membranes due to their high thermal resistance. The polyimide-based composite polyamide membranes showed desalination performance comparable to the commercial TFC membrane. However, the key advantage of the polyimide-based membrane is its high thermal stability. As the feed temperature increased from 25oC to 95oC, the water flux increased 5 - 6 times while the salt rejection almost kept constant. This membrane appears to provide a unique solution for hot water desalination and also a feasible way to improve the water productivity by increasing the operating temperature without any drop in salt rejection.
Resumo:
Novel magnetic carbon xerogels consisting of interconnected carbon microspheres with iron and/or cobalt microparticles embedded in their structure were developed by a simple route. As inferred from the characterization data, materials with distinctive properties may be directly obtained upon inclusion of iron and/or cobalt precursors during the sol-gel polymerization of resorcinol and formaldehyde, followed by thermal annealing. The unique properties of these magnetic carbon xerogels were explored in the catalytic wet peroxide oxidation (CWPO) of an antimicrobial agent typically found throughout the urban water cycle – sulfamethoxazole (SMX). A clear synergistic effect arises from the inclusion of cobalt and iron in carbon xerogels (CX/CoFe),the resulting magnetic material revealing a better performance in the CWPO of SMX at the ppb level(500 microg L−1) when compared to that of monometallic carbon xerogels containing only iron or cobalt.This effect was ascribed to the increased accessibility of highly active iron species promoted by the simultaneous incorporation of cobalt.The performance of the CWPO process in the presence of CX/CoFe was also evaluated in environmentally relevant water matrices, namely in drinking water and secondary treated wastewater, considered in addition to ultrapure water. It was found that the performance decreases when applied to more complex water and wastewater samples. Nevertheless, the ability of the CWPO technology for the elimination of SMX in secondary treated wastewater was unequivocally shown, with 96.8% of its initial content being removed after 6 h of reaction in the presence of CX/CoFe, at atmospheric pressure, room temperature(T = 25◦C), pH = 3, [H2O2]0= 500 mg L−1and catalyst load = 80 mg L−1. A similar performance (97.8% SMX removal) is obtained in 30 min when the reaction temperature is slightly increased up to 60◦C in an ultra-pure water matrix. Synthetic water containing humic acid, bicarbonate, sulphate or chloride, was also tested. The results suggest the scavenging effect of the different anions considered, as well as the negative impact of dissolved organic matter typically found in secondary treated wastewater, as simulated by the presence of humic acid.An in-situ magnetic separation procedure was applied for catalyst recovery and re-use during reusability cycles performed to mimic real-scale applications. CWPO runs performed with increased SMX concentration (10 mg L−1), under a water treatment process intensification approach, allowed to evalu-ate the mineralization levels obtained, the antimicrobial activity of the treated water, and to propose adegradation mechanism for the CWPO of SMX.
In Situ Characterization of Optical Absorption by Carbonaceous Aerosols: Calibration and Measurement
Resumo:
Light absorption by aerosols has a great impact on climate change. A Photoacoustic spectrometer (PA) coupled with aerosol-based classification techniques represents an in situ method that can quantify the light absorption by aerosols in a real time, yet significant differences have been reported using this method versus filter based methods or the so-called difference method based upon light extinction and light scattering measurements. This dissertation focuses on developing calibration techniques for instruments used in measuring the light absorption cross section, including both particle diameter measurements by the differential mobility analyzer (DMA) and light absorption measurements by PA. Appropriate reference materials were explored for the calibration/validation of both measurements. The light absorption of carbonaceous aerosols was also investigated to provide fundamental understanding to the absorption mechanism. The first topic of interest in this dissertation is the development of calibration nanoparticles. In this study, bionanoparticles were confirmed to be a promising reference material for particle diameter as well as ion-mobility. Experimentally, bionanoparticles demonstrated outstanding homogeneity in mobility compared to currently used calibration particles. A numerical method was developed to calculate the true distribution and to explain the broadening of measured distribution. The high stability of bionanoparticles was also confirmed. For PA measurement, three aerosol with spherical or near spherical shapes were investigated as possible candidates for a reference standard: C60, copper and silver. Comparisons were made between experimental photoacoustic absorption data with Mie theory calculations. This resulted in the identification of C60 particles with a mobility diameter of 150 nm to 400 nm as an absorbing standard at wavelengths of 405 nm and 660 nm. Copper particles with a mobility diameter of 80 nm to 300 nm are also shown to be a promising reference candidate at wavelength of 405 nm. The second topic of this dissertation focuses on the investigation of light absorption by carbonaceous particles using PA. Optical absorption spectra of size and mass selected laboratory generated aerosols consisting of black carbon (BC), BC with non-absorbing coating (ammonium sulfate and sodium chloride) and BC with a weakly absorbing coating (brown carbon derived from humic acid) were measured across the visible to near-IR (500 nm to 840 nm). The manner in which BC mixed with each coating material was investigated. The absorption enhancement of BC was determined to be wavelength dependent. Optical absorption spectra were also taken for size and mass selected smoldering smoke produced from six types of commonly seen wood in a laboratory scale apparatus.
Resumo:
Natural humic water was treated with ultraviolet (UV) light and UV + hydrogen peroxide . The effects on the dissolved organic carbon content (DOC), the UV-absorbance at 254 nm (UV-abs.), the molecular size distribution, pH, and mutagenic activity were monitored, and the identity and concentrations of the most abundant gas chromatographable organic degradation products were determined. The DOC content and the UV-abs. of the water decreased substantially during treatment with. The decreases were dependent on the time of irradiation (UV dose) as well as on the H2O2 dose applied. The humus macromolecules were degraded to smaller fragments during irradiation. At higher UV doses, however, part of the dissolved organic matter (DOM) was found to precipitate, probably as a result of polymerization. Oxalic acid, acetic acid, malonic acid, and n-butanoic acid were the most abundant degradation products detected. These acids were found to account for up to 20% and 80% of the DOM in UV- and waters, respectively. No mutagenic activity was generated by the UV irradiation or the treatment. It is further concluded that the substantial mutagenic activity formed during chlorination of humic waters cannot be decreased by using UV irradiation as a pretreatment step.
Resumo:
The effects of maize and soya bean residues on the pH and charge of a loamy sand (Kawalazi) and a sandy clay loam (Naming'omba) from Malawi were measured to determine both the indirect effect of the residues on soil charge through the changes in pH, and the direct contribution of charge carried on the residue surfaces. The soils had pH values (10 mM CaCl2) of 4.3 and 5.0 and organic matter contents were 1.4% and 2.7%, respectively. The clay fractions were dominated by kaolinite and goethite, and mica was present in both samples. The soils were incubated for 28 days with maize (Zea mays) and soya bean (Glycine max) residues. The maximum addition of residue (12.0%) in the Kawalazi and Naming'omba soils increased the pH from 4.3 and 5.0 to 4.8 and 5.3 (maize) and to 9.0 and 8.8 (soya bean), respectively. Negative charge increased from 2.1 and 4.7 cmol(c) kg(-1) to 3.8 and 7.5 (maize) and to 5.3 and 9.3 cmol(c) kg(-1) (soya bean). Positive charge increased from 0.72 and 0.62 to 0.87 and 0.85 cmol(c) kg(-1) (maize) and to 0.75 and 0.68 (soya bean). The charge contribution by the residues was calculated by difference between the charge on a sample incubated with residue and the charge on a soil without residue limed to the same pH value. Up to 100 cmolc negative charge and 10 cmol(c) of positive charge per kg of residue were directly contributed to the soil-residue mixture, the amounts depending on the type of residue, the extent to which the residue was decomposed in the soil and the pH of the mixture. The Anderson and Sposito method [Soil Sci. Soc. Am. J. 55 (1991) 1569] was used to partition the permanent negative charge (holding Cs+) from variable negative charge (holding Li+). In the pH range 3.7-6.5 the maize residue contributed between 3 and 26 cmol(c) of variable charge per kg of residue in the Kawalazi soil and between 6 and 25 cmol(c) per kg of residue in the Naming'omba soil. For soya bean the values were between I and 28 and between 4 and 68 cmolc per kg of residue, respectively. At a given pH value, the charge tended to increase with time of incubation and for a given addition of residue, pH decreased during incubation. Addition of residues contributed no permanent negative charge and the charge on the soil measured by Cs adsorption was independent of pH change caused by the residue showing that the method is valid for soil-residue mixtures. With time there was a decrease in the amount of permanent charge probably due to masking as humic material become adsorbed on mineral surfaces. (C) 2003 Elsevier Science B.V. All rights reserved.