995 resultados para Human Cystic Echinococcosis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The kidneys of patients with autosomal dominant polycystic kidney disease become massively enlarged due to the progressive expansion of myriad fluid-filled cysts. The epithelial cells that line the cyst walls are responsible for secreting the cyst fluid, but the mechanism through which this secretion occurs is not well established. Recent studies suggest that renal cyst epithelial cells actively secrete Cl across their apical membranes, which in turn drives the transepithelial movement of Na and water. The characteristics of this secretory flux suggest that it is dependent upon the participation of an apical cystic fibrosis transmembrane conductance regulator (CFTR)-like Cl channel and basolateral Na,K-ATPase. To test this hypothesis, we have immunolocalized the CFTR and Na,K-ATPase proteins in intact cysts and in cyst epithelial cells cultured in vitro on permeable filter supports. In both settings, cyst epithelial cells were found to possess Na,K-ATPase exclusively at their basolateral surfaces; apical labeling was not detected. The CFTR protein was present at the apical surfaces of cyst epithelial cells that had been stimulated to secrete through incubation in forskolin. CFTR was detected in intracellular structures in cultured cyst epithelial cells that had not received the forskolin treatment. These results demonstrate that the renal epithelial cells that line cysts in autosomal dominant polycystic kidney disease express transport systems with the appropriate polarity to mediate active Cl and fluid secretion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

cAMP-dependent chloride channels in heart contribute to autonomic regulation of action potential duration and membrane potential and have been inferred to be due to cardiac expression of the epithelial cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In this report, a cDNA from rabbit ventricle was isolated and sequenced, which encodes an exon 5 splice variant (exon 5-) of CFTR, with >90% identity to human CFTR cDNA present in epithelial cells. Expression of this cDNA in Xenopus oocytes gave rise to robust cAMP-activated chloride currents that were absent in control water-injected oocytes. Antisense oligodeoxynucleotides directed against CFTR significantly reduced the density of cAMP-dependent chloride currents in acutely cultured myocytes, thereby establishing a direct functional link between cardiac expression of CFTR protein and an endogenous chloride channel in native cardiac myocytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Specific mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), the most common autosomal recessive fatal genetic disease of Caucasians, result in the loss of epithelial cell adenosine 3',5'-cyclic-monophosphate (cAMP)-stimulated Cl- conductance. We show that the influx of a fluorescent dye, dihydrorhodamine 6G (dR6G), is increased in cells expressing human CFTR after retrovirus- and adenovirus-mediated gene transfer. dR6G influx is stimulated by cAMP and is inhibited by antagonists of cAMP action. Dye uptake is ATP-dependent and inhibited by Cl- removal or the addition of 10 mM SCN-. Increased staining is associated with functional activation of CFTR Cl- permeability. dR6G staining enables both the fluorescent assessment of CFTR function and the identification of successfully corrected cells after gene therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expression of human keratinocyte growth factor (KGF/FGF-7) was directed to epithelial cells of the developing embryonic lung of transgenic mice disrupting normal pulmonary morphogenesis during the pseudoglandular stage of development. By embryonic day 15.5(E15.5), lungs of transgenic surfactant protein C (SP-C)-KGF mice resembled those of humans with pulmonary cystadenoma. Lungs were cystic, filling the thoracic cavity, and were composed of numerous dilated saccules lined with glycogen-containing columnar epithelial cells. The normal distribution of SP-C proprotein in the distal regions of respiratory tubules was disrupted. Columnar epithelial cells lining the papillary structures stained variably and weakly for this distal respiratory cell marker. Mesenchymal components were preserved in the transgenic mouse lungs, yet the architectural relationship of the epithelium to the mesenchyme was altered. SP-C-KGF transgenic mice failed to survive gestation to term, dying before E17.5. Culturing mouse fetal lung explants in the presence of recombinant human KGF also disrupted branching morphogenesis and resulted in similar cystic malformation of the lung. Thus, it appears that precise temporal and spatial expression of KGF is likely to play a crucial role in the control of branching morphogenesis during fetal lung development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cystic fibrosis transmembrane conductance regulator (CFTR) functions as a Cl- channel that becomes activated after phosphorylation by cAMP-dependent protein kinase (PKA). We demonstrate that PKA also plays a crucial role in maintaining basal expression of the CFTR gene in the human colon carcinoma cell line T84. Inhibition of PKA activity by expression of a dominant-negative regulatory subunit or treatment with the PKA-selective inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89) caused a complete suppression of CFTR gene expression without affecting other constitutively active genes. Basal expression of a 2.2-kb region of the CFTR promoter linked to a luciferase reporter gene (CFTR-luc) exhibited the same dependence on PKA. The ability of cAMP to induce CFTR over basal levels is cell-type specific. In T84 cells, both the endogenous CFTR gene and CFTR-luc exhibited only a modest inducibility (approximately 2-fold), whereas in the human choriocarcinoma cell line JEG-3, CFTR-luc could be induced at least 4-fold. A variant cAMP-response element is present at position -48 to -41 in the CFTR promoter, and mutation of this sequence blocks basal expression. We conclude that cAMP, acting through PKA, is an essential regulator of basal CFTR gene expression and may mediate an induction of CFTR in responsive cell types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cystic fibrosis (CF), a disorder of electrolyte transport manifest in the lungs, pancreas, sweat duct, and vas deferens, is caused by mutations in the CF transmembrane conductance regulator (CFTR). The CFTR protein has been shown to function as a cAMP-activated chloride channel and also regulates a separate protein, the outwardly rectifying chloride channel (ORCC). To determine the consequence of disease-producing mutations upon these functions, mutant CFTR was transiently expressed in Xenopus oocytes and in human airway epithelial cells lacking functional CFTR. Both G551D, a mutation that causes severe lung disease, and A455E, a mutation associated with mild lung disease, altered but did not abolish CFTR's function as a chloride channel in Xenopus oocytes. Airway epithelial cells transfected with CFTR bearing either A455E or G551D had levels of chloride conductance significantly greater than those of mock-transfected and lower than those of wild-type CFTR-transfected cells, as measured by chloride efflux. A combination of channel blockers and analysis of current-voltage relationships were used to dissect the contribution of CFTR and the ORCC to whole cell currents of transfected cells. While CFTR bearing either mutation could function as a chloride channel, only CFTR bearing A455E retained the function of regulating the ORCC. These results indicate that CF mutations can affect CFTR functions differently and suggest that severity of pulmonary disease may be more closely associated with the regulatory rather than chloride channel function of CFTR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The metacestode (larval) stage of the tapeworm Echinococcus multilocularis causes alveolar echinococcosis (AE), a very severe and in many cases incurable disease. To date, benzimidazoles such as albendazole and mebendazole are the only approved chemotherapeutical treatment options. Benzimidazoles inhibit metacestode proliferation, but do not act parasiticidal. Thus, benzimidazoles have to be taken a lifelong, can cause adverse side effects such as hepatotoxicity, and are ineffective in some patients. We here describe a newly developed screening cascade for the evaluation of the in vitro efficacy of new compounds that includes assessment of parasiticidal activity. The Malaria Box from Medicines for Malaria Venture (MMV), comprised of 400 commercially available chemicals that show in vitro activity against Plasmodium falciparum, was repurposed. Primary screening was carried out at 10 μM by employing the previously described PGI assay, and resulted in the identification of 24 compounds that caused physical damage in metacestodes. Seven out of these 24 drugs were also active at 1 μM. Dose-response assays revealed that only 2 compounds, namely MMV665807 and MMV665794, exhibited an EC50 value below 5 μM. Assessments using human foreskin fibroblasts and Reuber rat hepatoma cells showed that the salicylanilide MMV665807 was less toxic for these two mammalian cell lines than for metacestodes. The parasiticidal activity of MMV665807 was then confirmed using isolated germinal layer cell cultures as well as metacestode vesicles by employing viability assays, and its effect on metacestodes was morphologically evaluated by electron microscopy. However, both oral and intraperitoneal application of MMV665807 to mice experimentally infected with E. multilocularis metacestodes did not result in any reduction of the parasite load.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) is central to its function, with the most common mutation, DeltaF508, resulting in abnormal processing and trafficking. Therefore, there is a significant need to develop tools, which enable the trafficking of CFTR to be studied in vitro and in vivo. In previous studies it has been demonstrated that fusion of the green fluorescent protein (GFP) to the N-terminus of CFTR does lead to functional expression of CFTR chloride channels in epithelial cell lines. The aim of the present study was to examine whether it is possible to express GFP-tagged CFTR as a transgene in colonic and airway epithelial cells of cystic fibrosis (CF) mice and to correct the CF defect. Using the epithelial-specific human cytokeratin promoter K18, we generated bitransgenic mice cftr(G551D/G551D) K18-GFP-CFTR+/-, designated GFP mice. Transcripts for GFP-CFTR could be detected in bitransgenic mice by use of RT-PCR techniques. Expression of GFP-CFTR protein was detected specifically in the colonic epithelium by both direct GFP fluorescence and the use of an anti-GFP antibody. Ussing chamber studies showed that the ion transport defect in colon and airways observed in cftr(G551D/G551D) mice was partially corrected in the bitransgenic animals. Thus, K18-GFP-CFTR is functionally expressed in transgenic mice, which will be a valuable tool in studies on CFTR synthesis, processing and ion transport in native epithelial tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As exemplified by aborted calcified liver lesions commonly found in patients from endemic areas, Echinococcus multilocularis metacestodes develop only in a minority of individuals exposed to infection with the papasite. Clinical research has disclosed some aspects of the survival strategy of E. multilocularis in human hosts. Clinical observations in liver transplantation and AIDS suggest that suppression of cellular/Th1related immunity increases disease severity. Most of the studies have stressed a role for CD8+ T cells and for Interleukin-10 in the development of tolerance. A spontaneous secretion of IL-10 by the PBMC seems to be the immunological hallmark of patients with progressive forms of alveolar echinococcosis (AE). IL-10-induced inhibition of effector macrophages, but also of antigen-presenting dendritic cells, may be operating and allowing parasite growth and survival. The genetic correlates of susceptibility to infection with E. multilocularis are clearer in humans than in the mouse model. A significant link between MHC polymorphism and clinical presentation of AE has been shown, and the spontaneous secretion of IL-10 in patients with a progressive AE is higher in patients with the HLA DR3+, DQ2+ haplotype. Clustering of cases in certain families, in communities otherwise exposed to similar risk factors, also points to immuno-genetic predisposition factors that may allow the larva to escape host immunity more easily. The first stage of larval development may be crucial in producing danger signals stimulating the initial production of cytokines. Therapeutic use of Interferon alpha is an attempt to foil the survival strategy of E. multilocularis. (C) 2005 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The major cause of death in CF is a continuous inflammation of the lungs colonised with Pseudomonas aeruginosa and occasionally also with Burkholderia cepacia. A combination of serum IgG to LPS and serum PCT levels were found to be good markers for detection of early colonisation with P. aeruginosa. Colomycin sulphomethate (colistin E) is one of the antibiotics used to treat P. aeruginosa infections in CF. Electrophoretic methods were developed to monitor the rate of conversion of colomycin sulphomethate to the active form of the drug. Antimicrobial activity towards P. aeruginosa was generated as the sulphomethate substituents were released. Clinical resistance of P. aeruginosa to colomycin is rare, but a number of isolates have been isolated. Twelve colomycin-resistant clinical isolates were investigated to determine the mechanism of resistance. It was found that the low level of resistance was due to over expression of outer membrane protein H (OprH) in 5 isolates. A novel mechanism of resistance involving modification of the phosphate groups in LPS was identified in one of the isolates. Drugs which reduce inflammation in infected CF lungs would be of great advantage for therapy. Reducing inflammation would preserve the lung function and increase the quality of life for CF patients. Antibiotics like tetracyclines, macrolides and polymyxins were tested for their potential anti-inflammatory effects using cultured human monocytic (U937) cells which secrete the pro-inflammatory cytokines IL1- and TNF- in response to LPS from P. aeruginosa and B. cepacia. It was found that tetracyclines, and especially doxycycline, are good inhibitors of cytokine release by U937 cells and therefore could reduce the inflammatory cascade.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The principal aim of this work was to investigate the development of the S-cone colour-opponent pathway in human infants aged 4 weeks to 6 months. This was achieved by recording transient visual evoked responses to pattern-onset stimuli along a tritanopic confusion axis (tritan stimuli) at and around the adult isoluminant match. For comparison, visual evoked responses to red-green and luminance-modulated stimuli were recorded from the same infants at the same ages. Evoked responses were also recorded from colour-normal adults for comparison with those of the infants. The transient VEP allowed observation of response morphology as luminance differences were introduced to the chromatic stimuli. In this way, an estimate of isoluminance was possible in infants. Estimated isoluminant points for a group of six infants aged 6 to 10 weeks closely approximated the adult isoluminant match. This finding has implications for the use of photometric isoluminance in infant work, and suggests that photopic spectral sensitivity is similar in infants and adults. Abnormalities of the visual evoked responses to tritan, red-green and luminance-modulated stimuli in an infant with cystic fibrosis are reported. The results suggest abnormal function of the retino-striate visual pathway in this infant, and it is argued that these may be secondary to his illness, although data from more infants with cystic fibrosis are needed to clarify this further. A group of nine healthy infants demonstrated evoked responses to tritan stimuli by 4 to 10 weeks and to red-green stimuli by 6 to 11 weeks post-term age. Responses to luminance-modulated stimuli were present in all nine infants at the earliest age tested, namely 4 weeks post-term. The slightly earlier age of onset of evoked responses to tritan stimuli than for red-green may be explained by the relatively lower cone contrast afforded by red-green stimuli. Latency of the evoked response to both types of chromatic stimuli and to luminance-modulated stimuli decreased with age at a similar rate, suggesting that the visual pathways transmitting luminance and chromatic information mature at similar rates in young infants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have shown that proteins within apically enriched fractions of human nasal respiratory epithelium vary their phosphohistidine content with ambient [Cl-] and other anion concentrations. This membrane-delimited phosphorylation cascade includes a multifunctional protein histidine kinase - nucleoside diphosphate kinase (NDPK). NDPK is itself a cascade component in both human and ovine airway, the self-phosphorylation of which is inhibited selectively by [Na+] in the presence of ATP (but not GTP). These findings led us to propose the existence of a dual anion-/cation-controlled phosphorylation-based "sensor" bound to the apical membrane. The present study showed that this cascade uses ATP to phosphorylate a group of proteins above 45 kDa (p45-group, identities unknown). Additionally, the Cl- dependence of ATP (but not GTP) phosphorylation is conditional on phosphatase activity and that interactions exist between the ATP- and GTP-phosphorylated components of the cascade under Cl--free conditions. As a prelude to studies in cystic fibrosis (CF) mice, we showed in the present study that NDPK is present and functionally active in normal murine airway. Since NDPK is essential for UTP synthesis and regulates fetal gut development, G proteins, K+channels, neutrophil-mediated inflammation and pancreatic secretion, the presence of ion-regulated NDPK protein in mouse airway epithelium might aid understanding of the pathogenesis of CF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The emerging role of the multifunctional enzyme, Transglutaminase 2 (TG2) in Cystic Fibrosis (CF) has been linked to its increased expression and intracellular transamidating activity. However, a full understanding of the molecular mechanisms involved still remains unclear despite numerous studies that have attempted to delineate this process. These mechanisms include the NFκB and TGFβ1 pathway amongst others. This study reveals for the first time that the development of fibrosis in CF is due to a TG2-driven epithelial to mesenchymal transition (EMT) via a mechanism involving the activation of the pro-fibrotic cytokine TGFβ1. Using a human ΔF508/W1282X CFTR CF mutant bronchial cell (IB3-1), its CFTR corrected “add-back” cell (C38) as well as a primary human bronchial epithelial cell (HBEC), elevated TG2 levels in the CFTR mutant IB3 cell were shown to activate latent TGFβ1 leading to increased levels found in the culture medium. This activation process was blocked by the presence of cell-permeable and impermeable TG2 inhibitors while inhibition of TGFβ1 receptors blocked TG2 expression. This demonstrates the direct link between TG2 and TGFβ1 in CF. The presence of active cell surface TG2 correlated with an increase in the expression of EMT markers, associated with the CF mutant cells, which could be blocked by the presence of TG2 inhibitors. This was mimicked using the “addback” C38 cell and the primary human bronchial epithelial cell, HBEC, where an increase in TG2 expression and activity in the presence of TGFβ1 concurred with a change in cell morphology and an elevation in EMT marker expression. Conversely, a knockdown of TG2 in the CF mutant IB3 cells illustrated that an inhibition of TG2 blocks the increase in EMT marker expression as well as causing an increase in TEER measurement. This together with an increase in the migration profile of the CF mutant IB3 cell against the “add-back” C38 cell suggests that TG2 drives a mesenchymal phenotype in CF. The involvement of TG2 activated TGFβ1 in CF was further demonstrated with an elevation/inhibition of p- SMAD 2 and 3 activation in the presence of TGFβ1/TG2 cell-permeable/impermeable inhibitors respectively. The use of a comparative airway cell model where bronchial epithelial cells were cultured at the air liquid interface (ALI) confirmed the observations in submerged culture depicting the robustness of the model and reiterated the importance of TG2 in CF. Using a CFTR corrector combined with TG2 inhibitors, this study showed that the correction and stabilisation of the ΔF508 CFTR mutation in the mutant cell forged an increase in matured CFTR copies trafficking to the apical surface by circumventing proteosomal degradation. Thus the results presented here suggests that TG2 expression is elevated in the CFTR mutant bronchial cell via a TGFβ1 driven positive feedback cycle whereby activation of latent TGFβ1 by TG2 leads in turn to an elevation in its own expression by TGFβ1. This vicious cycle then drives EMT in CF ultimately leading to lung remodelling and fibrosis. Importantly, TG2 inhibition blocks TGFβ1 activation leading to an inhibition of EMT and further blocks the emerging fibrosis, thus stabilizing and supporting the maturation, trafficking and conductance of CFTR channels at the apical surface.