955 resultados para Horvath-kawazoe Equations
Resumo:
Part I (Manjunath et al., 1994, Chem. Engng Sci. 49, 1451-1463) of this paper showed that the random particle numbers and size distributions in precipitation processes in very small drops obtained by stochastic simulation techniques deviate substantially from the predictions of conventional population balance. The foregoing problem is considered in this paper in terms of a mean field approximation obtained by applying a first-order closure to an unclosed set of mean field equations presented in Part I. The mean field approximation consists of two mutually coupled partial differential equations featuring (i) the probability distribution for residual supersaturation and (ii) the mean number density of particles for each size and supersaturation from which all average properties and fluctuations can be calculated. The mean field equations have been solved by finite difference methods for (i) crystallization and (ii) precipitation of a metal hydroxide both occurring in a single drop of specified initial supersaturation. The results for the average number of particles, average residual supersaturation, the average size distribution, and fluctuations about the average values have been compared with those obtained by stochastic simulation techniques and by population balance. This comparison shows that the mean field predictions are substantially superior to those of population balance as judged by the close proximity of results from the former to those from stochastic simulations. The agreement is excellent for broad initial supersaturations at short times but deteriorates progressively at larger times. For steep initial supersaturation distributions, predictions of the mean field theory are not satisfactory thus calling for higher-order approximations. The merit of the mean field approximation over stochastic simulation lies in its potential to reduce expensive computation times involved in simulation. More effective computational techniques could not only enhance this advantage of the mean field approximation but also make it possible to use higher-order approximations eliminating the constraints under which the stochastic dynamics of the process can be predicted accurately.
Resumo:
In routine industrial design, fatigue life estimation is largely based on S-N curves and ad hoc cycle counting algorithms used with Miner's rule for predicting life under complex loading. However, there are well known deficiencies of the conventional approach. Of the many cumulative damage rules that have been proposed, Manson's Double Linear Damage Rule (DLDR) has been the most successful. Here we follow up, through comparisons with experimental data from many sources, on a new approach to empirical fatigue life estimation (A Constructive Empirical Theory for Metal Fatigue Under Block Cyclic Loading', Proceedings of the Royal Society A, in press). The basic modeling approach is first described: it depends on enforcing mathematical consistency between predictions of simple empirical models that include indeterminate functional forms, and published fatigue data from handbooks. This consistency is enforced through setting up and (with luck) solving a functional equation with three independent variables and six unknown functions. The model, after eliminating or identifying various parameters, retains three fitted parameters; for the experimental data available, one of these may be set to zero. On comparison against data from several different sources, with two fitted parameters, we find that our model works about as well as the DLDR and much better than Miner's rule. We finally discuss some ways in which the model might be used, beyond the scope of the DLDR.
Resumo:
A direct method of solution is presented for singular integral equations of the first kind, involving the combination of a logarithmic and a Cauchy type singularity. Two typical cages are considered, in one of which the range of integration is a Single finite interval and, in the other, the range of integration is a union of disjoint finite intervals. More such general equations associated with a finite number (greater than two) of finite, disjoint, intervals can also be handled by the technique employed here.
Resumo:
The power system network is assumed to be in steady-state even during low frequency transients. However, depending on generator dynamics, and toad and control characteristics, the system model and the nature of power flow equations can vary The nature of power flow equations describing the system during a contingency is investigated in detail. It is shown that under some mild assumptions on load-voltage characteristics, the power flow equations can be decoupled in an exact manner. When the generator dynamics are considered, the solutions for the load voltages are exact if load nodes are not directly connected to each other
Resumo:
We investigate methods for data-based selection of working covariance models in the analysis of correlated data with generalized estimating equations. We study two selection criteria: Gaussian pseudolikelihood and a geodesic distance based on discrepancy between model-sensitive and model-robust regression parameter covariance estimators. The Gaussian pseudolikelihood is found in simulation to be reasonably sensitive for several response distributions and noncanonical mean-variance relations for longitudinal data. Application is also made to a clinical dataset. Assessment of adequacy of both correlation and variance models for longitudinal data should be routine in applications, and we describe open-source software supporting this practice.
Resumo:
Objective To discuss generalized estimating equations as an extension of generalized linear models by commenting on the paper of Ziegler and Vens "Generalized Estimating Equations. Notes on the Choice of the Working Correlation Matrix". Methods Inviting an international group of experts to comment on this paper. Results Several perspectives have been taken by the discussants. Econometricians have established parallels to the generalized method of moments (GMM). Statisticians discussed model assumptions and the aspect of missing data Applied statisticians; commented on practical aspects in data analysis. Conclusions In general, careful modeling correlation is encouraged when considering estimation efficiency and other implications, and a comparison of choosing instruments in GMM and generalized estimating equations, (GEE) would be worthwhile. Some theoretical drawbacks of GEE need to be further addressed and require careful analysis of data This particularly applies to the situation when data are missing at random.
Resumo:
Selecting an appropriate working correlation structure is pertinent to clustered data analysis using generalized estimating equations (GEE) because an inappropriate choice will lead to inefficient parameter estimation. We investigate the well-known criterion of QIC for selecting a working correlation Structure. and have found that performance of the QIC is deteriorated by a term that is theoretically independent of the correlation structures but has to be estimated with an error. This leads LIS to propose a correlation information criterion (CIC) that substantially improves the QIC performance. Extensive simulation studies indicate that the CIC has remarkable improvement in selecting the correct correlation structures. We also illustrate our findings using a data set from the Madras Longitudinal Schizophrenia Study.
Resumo:
We propose an iterative estimating equations procedure for analysis of longitudinal data. We show that, under very mild conditions, the probability that the procedure converges at an exponential rate tends to one as the sample size increases to infinity. Furthermore, we show that the limiting estimator is consistent and asymptotically efficient, as expected. The method applies to semiparametric regression models with unspecified covariances among the observations. In the special case of linear models, the procedure reduces to iterative reweighted least squares. Finite sample performance of the procedure is studied by simulations, and compared with other methods. A numerical example from a medical study is considered to illustrate the application of the method.
Resumo:
The method of generalized estimating equation-, (GEEs) has been criticized recently for a failure to protect against misspecification of working correlation models, which in some cases leads to loss of efficiency or infeasibility of solutions. However, the feasibility and efficiency of GEE methods can be enhanced considerably by using flexible families of working correlation models. We propose two ways of constructing unbiased estimating equations from general correlation models for irregularly timed repeated measures to supplement and enhance GEE. The supplementary estimating equations are obtained by differentiation of the Cholesky decomposition of the working correlation, or as score equations for decoupled Gaussian pseudolikelihood. The estimating equations are solved with computational effort equivalent to that required for a first-order GEE. Full details and analytic expressions are developed for a generalized Markovian model that was evaluated through simulation. Large-sample ".sandwich" standard errors for working correlation parameter estimates are derived and shown to have good performance. The proposed estimating functions are further illustrated in an analysis of repeated measures of pulmonary function in children.
Resumo:
Statistical methods are often used to analyse commercial catch and effort data to provide standardised fishing effort and/or a relative index of fish abundance for input into stock assessment models. Achieving reliable results has proved difficult in Australia's Northern Prawn Fishery (NPF), due to a combination of such factors as the biological characteristics of the animals, some aspects of the fleet dynamics, and the changes in fishing technology. For this set of data, we compared four modelling approaches (linear models, mixed models, generalised estimating equations, and generalised linear models) with respect to the outcomes of the standardised fishing effort or the relative index of abundance. We also varied the number and form of vessel covariates in the models. Within a subset of data from this fishery, modelling correlation structures did not alter the conclusions from simpler statistical models. The random-effects models also yielded similar results. This is because the estimators are all consistent even if the correlation structure is mis-specified, and the data set is very large. However, the standard errors from different models differed, suggesting that different methods have different statistical efficiency. We suggest that there is value in modelling the variance function and the correlation structure, to make valid and efficient statistical inferences and gain insight into the data. We found that fishing power was separable from the indices of prawn abundance only when we offset the impact of vessel characteristics at assumed values from external sources. This may be due to the large degree of confounding within the data, and the extreme temporal changes in certain aspects of individual vessels, the fleet and the fleet dynamics.
Resumo:
The method of generalised estimating equations for regression modelling of clustered outcomes allows for specification of a working matrix that is intended to approximate the true correlation matrix of the observations. We investigate the asymptotic relative efficiency of the generalised estimating equation for the mean parameters when the correlation parameters are estimated by various methods. The asymptotic relative efficiency depends on three-features of the analysis, namely (i) the discrepancy between the working correlation structure and the unobservable true correlation structure, (ii) the method by which the correlation parameters are estimated and (iii) the 'design', by which we refer to both the structures of the predictor matrices within clusters and distribution of cluster sizes. Analytical and numerical studies of realistic data-analysis scenarios show that choice of working covariance model has a substantial impact on regression estimator efficiency. Protection against avoidable loss of efficiency associated with covariance misspecification is obtained when a 'Gaussian estimation' pseudolikelihood procedure is used with an AR(1) structure.
Resumo:
This note is concerned with the problem of determining approximate solutions of Fredholm integral equations of the second kind. Approximating the solution of a given integral equation by means of a polynomial, an over-determined system of linear algebraic equations is obtained involving the unknown coefficients, which is finally solved by using the least-squares method. Several examples are examined in detail. (c) 2009 Elsevier Inc. All rights reserved.
Resumo:
The paper presents two new algorithms for the direct parallel solution of systems of linear equations. The algorithms employ a novel recursive doubling technique to obtain solutions to an nth-order system in n steps with no more than 2n(n −1) processors. Comparing their performance with the Gaussian elimination algorithm (GE), we show that they are almost 100% faster than the latter. This speedup is achieved by dispensing with all the computation involved in the back-substitution phase of GE. It is also shown that the new algorithms exhibit error characteristics which are superior to GE. An n(n + 1) systolic array structure is proposed for the implementation of the new algorithms. We show that complete solutions can be obtained, through these single-phase solution methods, in 5n−log2n−4 computational steps, without the need for intermediate I/O operations.
Resumo:
The article describes a generalized estimating equations approach that was used to investigate the impact of technology on vessel performance in a trawl fishery during 1988-96, while accounting for spatial and temporal correlations in the catch-effort data. Robust estimation of parameters in the presence of several levels of clustering depended more on the choice of cluster definition than on the choice of correlation structure within the cluster. Models with smaller cluster sizes produced stable results, while models with larger cluster sizes, that may have had complex within-cluster correlation structures and that had within-cluster covariates, produced estimates sensitive to the correlation structure. The preferred model arising from this dataset assumed that catches from a vessel were correlated in the same years and the same areas, but independent in different years and areas. The model that assumed catches from a vessel were correlated in all years and areas, equivalent to a random effects term for vessel, produced spurious results. This was an unexpected finding that highlighted the need to adopt a systematic strategy for modelling. The article proposes a modelling strategy of selecting the best cluster definition first, and the working correlation structure (within clusters) second. The article discusses the selection and interpretation of the model in the light of background knowledge of the data and utility of the model, and the potential for this modelling approach to apply in similar statistical situations.
Resumo:
Troxel, Lipsitz, and Brennan (1997, Biometrics 53, 857-869) considered parameter estimation from survey data with nonignorable nonresponse and proposed weighted estimating equations to remove the biases in the complete-case analysis that ignores missing observations. This paper suggests two alternative modifications for unbiased estimation of regression parameters when a binary outcome is potentially observed at successive time points. The weighting approach of Robins, Rotnitzky, and Zhao (1995, Journal of the American Statistical Association 90, 106-121) is also modified to obtain unbiased estimating functions. The suggested estimating functions are unbiased only when the missingness probability is correctly specified, and misspecification of the missingness model will result in biases in the estimates. Simulation studies are carried out to assess the performance of different methods when the covariate is binary or normal. For the simulation models used, the relative efficiency of the two new methods to the weighting methods is about 3.0 for the slope parameter and about 2.0 for the intercept parameter when the covariate is continuous and the missingness probability is correctly specified. All methods produce substantial biases in the estimates when the missingness model is misspecified or underspecified. Analysis of data from a medical survey illustrates the use and possible differences of these estimating functions.