930 resultados para Horses -- Diseases
Resumo:
Editorial
Resumo:
Grass pollens of the temperate (Pooideae) subfamily and subtropical subfamilies of grasses are major aeroallergen sources worldwide. The subtropical Chloridoideae (e.g. Cynodon dactylon; Bermuda grass) and Panicoideae (e.g. Paspalum notatum; Bahia grass) species are abundant in parts of Africa, India, Asia, Australia and the Americas, where a large and increasing proportion of the world's population abide. These grasses are phylogenetically and ecologically distinct from temperate grasses. With the advent of global warming, it is conceivable that the geographic distribution of subtropical grasses and the contribution of their pollen to the burden of allergic rhinitis and asthma will increase. This review aims to provide a comprehensive synthesis of the current global knowledge of (i) regional variation in allergic sensitivity to subtropical grass pollens, (ii) molecular allergenic components of subtropical grass pollens and (iii) allergic responses to subtropical grass pollen allergens in relevant populations. Patients from subtropical regions of the world show higher allergic sensitivity to grass pollens of Chloridoideae and Panicoideae grasses, than to temperate grass pollens. The group 1 allergens are amongst the allergen components of subtropical grass pollens, but the group 5 allergens, by which temperate grass pollen extracts are standardized for allergen content, appear to be absent from both subfamilies of subtropical grasses. Whilst there are shared allergenic components and antigenic determinants, there are additional clinically relevant subfamily-specific differences, at T- and B-cell levels, between pollen allergens of subtropical and temperate grasses. Differential immune recognition of subtropical grass pollens is likely to impact upon the efficacy of allergen immunotherapy of patients who are primarily sensitized to subtropical grass pollens. The literature reviewed herein highlights the clinical need to standardize allergen preparations for both types of subtropical grass pollens to achieve optimal diagnosis and treatment of patients with allergic respiratory disease in subtropical regions of the world. © 2014 John Wiley & Sons Ltd.
Resumo:
Background Heatwaves have a significant impact on population health including both morbidity and mortality. In this study we examined the association between heatwaves and emergency hospital admissions (EHAs) for renal diseases in children (aged 0–14 years) in Brisbane, Australia. Methods Daily data on EHAs for renal diseases in children and exposure to temperature and air pollution were obtained for Brisbane city from January 1, 1996 to December 31, 2005. A time-stratified case-crossover design was used to compare the risks for renal diseases between heatwave and non-heatwave periods. Results There were 1565 EHAs for renal diseases in children during the study period. Heatwaves exhibited a significant impact on EHAs for renal diseases in children after adjusting for confounding factors (odds ratio: 3.6; 95% confidence interval: 1.4–9.5). The risk estimates differed with lags and the use of different heatwave definitions. Conclusions There was a significant increase in EHAs for renal diseases in children during heatwaves in Brisbane, a subtropical city where people are well accustomed to warm weather. This finding may have significant implications for pediatric renal care, particularly in subtropical and tropical regions.
Resumo:
Carbon nanostructures (CNs) are amongst the most promising biorecognition nanomaterials due to their unprecedented optical, electrical and structural properties. As such, CNs may be harnessed to tackle the detrimental public health and socio-economic adversities associated with neurodegenerative diseases (NDs). In particular, CNs may be tailored for a specific determination of biomarkers indicative of NDs. However, the realization of such a biosensor represents a significant technological challenge in the uniform fabrication of CNs with outstanding qualities in order to facilitate a highly-sensitive detection of biomarkers suspended in complex biological environments. Notably, the versatility of plasma-based techniques for the synthesis and surface modification of CNs may be embraced to optimize the biorecognition performance and capabilities. This review surveys the recent advances in CN-based biosensors, and highlights the benefits of plasma-processing techniques to enable, enhance, and tailor the performance and optimize the fabrication of CNs, towards the construction of biosensors with unparalleled performance for the early diagnosis of NDs, via a plethora of energy-efficient, environmentally-benign, and inexpensive approaches.
Resumo:
Endosplasmic reticulum aminopeptidase 1 (ERAP1), endoplasmic reticulum aminopeptidase 2 (ERAP2) and puromycin-sensitive aminopeptidase (NPEPPS) are key zinc metallopeptidases that belong to the oxytocinase subfamily of M1 aminopeptidase family. NPEPPS catalyzes the processing of proteosome-derived peptide repertoire followed by trimming of antigenic peptides by ERAP1 and ERAP2 for presentation on major histocompatibility complex (MHC) Class I molecules. A series of genome-wide association studies have demonstrated associations of these aminopeptidases with a range of immune-mediated diseases such as ankylosing spondylitis, psoriasis, Behçet's disease, inflammatory bowel disease and type I diabetes, and significantly, genetic interaction between some aminopeptidases and HLA Class I loci with which these diseases are strongly associated. In this review, we highlight the current state of understanding of the genetic associations of this class of genes, their functional role in disease, and potential as therapeutic targets.
Resumo:
Shared aetiopathogenic factors among immune-mediated diseases have long been suggested by their co-familiality and co-occurrence, and molecular support has been provided by analysis of human leukocyte antigen (HLA) haplotypes and genome-wide association studies. The interrelationships can now be better appreciated following the genotyping of large immune disease sample sets on a shared SNP array: the 'Immunochip'. Here, we systematically analyse loci shared among major immune-mediated diseases. This reveals that several diseases share multiple susceptibility loci, but there are many nuances. The most associated variant at a given locus frequently differs and, even when shared, the same allele often has opposite associations. Interestingly, risk alleles conferring the largest effect sizes are usually disease-specific. These factors help to explain why early evidence of extensive 'sharing' is not always reflected in epidemiological overlap. © 2013 Macmillan Publishers Limited. All rights reserved.
Resumo:
In order to progress beyond currently available medical devices and implants, the concept of tissue engineering has moved into the centre of biomedical research worldwide. The aim of this approach is not to replace damaged tissue with an implant or device but rather to prompt the patient's own tissue to enact a regenerative response by using a tissue-engineered construct to assemble new functional and healthy tissue. More recently, it has been suggested that the combination of Synthetic Biology and translational tissue-engineering techniques could enhance the field of personalized medicine, not only from a regenerative medicine perspective, but also to provide frontier technologies for building and transforming the research landscape in the field of in vitro and in vivo disease models.
Resumo:
Copy number variants (CNVs) account for a major proportion of human genetic polymorphism and have been predicted to have an important role in genetic susceptibility to common disease. To address this we undertook a large, direct genome-wide study of association between CNVs and eight common human diseases. Using a purpose-designed array we typed 19,000 individuals into distinct copy-number classes at 3,432 polymorphic CNVs, including an estimated 50% of all common CNVs larger than 500 base pairs. We identified several biological artefacts that lead to false-positive associations, including systematic CNV differences between DNAs derived from blood and cell lines. Association testing and follow-up replication analyses confirmed three loci where CNVs were associated with diseaseIRGM for Crohns disease, HLA for Crohns disease, rheumatoid arthritis and type 1 diabetes, and TSPAN8 for type 2 diabetesalthough in each case the locus had previously been identified in single nucleotide polymorphism (SNP)-based studies, reflecting our observation that most common CNVs that are well-typed on our array are well tagged by SNPs and so have been indirectly explored through SNP studies. We conclude that common CNVs that can be typed on existing platforms are unlikely to contribute greatly to the genetic basis of common human diseases. © 2010 Macmillan Publishers Limited. All rights reserved.
Resumo:
Bone and joint diseases are major causes of morbidity and mortality worldwide, and their prevalence is increasing as the average population age increases. Most common musculoskeletal diseases show significant heritability, and few have treatments that prevent disease or can induce true treatment-free, disease-free remission. Furthermore, despite valiant efforts of hypothesis-driven research, our understanding of the etiopathogenesis of these conditions is, with few exceptions, at best moderate. Therefore, there has been a long-standing interest in genetics research in musculoskeletal disease as a hypothesis-free method for investigating disease etiopathogenesis. Important contributions have been made through the identification of monogenic causes of disease, but the holy grail of human genetics research has been the identification of the genes responsible for common diseases. The development of genome-wide association (GWA) studies has revolutionized this field, and led to an explosion in the number of genes identified that are definitely involved in musculoskeletal disease pathogenesis. However, this approach will not identify all common disease genes, and although the current progress is exciting and proves the potential of this research discipline, other approaches will be required to identify many of the types of genetic variation likely to be involved.
Resumo:
Background Up-to-date evidence about levels and trends in disease and injury incidence, prevalence, and years lived with disability (YLDs) is an essential input into global, regional, and national health policies. In the Global Burden of Disease Study 2013 (GBD 2013), we estimated these quantities for acute and chronic diseases and injuries for 188 countries between 1990 and 2013. Methods Estimates were calculated for disease and injury incidence, prevalence, and YLDs using GBD 2010 methods with some important refi nements. Results for incidence of acute disorders and prevalence of chronic disorders are new additions to the analysis. Key improvements include expansion to the cause and sequelae list, updated systematic reviews, use of detailed injury codes, improvements to the Bayesian meta-regression method (DisMod-MR), and use of severity splits for various causes. An index of data representativeness, showing data availability, was calculated for each cause and impairment during three periods globally and at the country level for 2013. In total, 35 620 distinct sources of data were used and documented to calculated estimates for 301 diseases and injuries and 2337 sequelae. The comorbidity simulation provides estimates for the number of sequelae, concurrently, by individuals by country, year, age, and sex. Disability weights were updated with the addition of new population-based survey data from four countries. Findings Disease and injury were highly prevalent; only a small fraction of individuals had no sequelae. Comorbidity rose substantially with age and in absolute terms from 1990 to 2013. Incidence of acute sequelae were predominantly infectious diseases and short-term injuries, with over 2 billion cases of upper respiratory infections and diarrhoeal disease episodes in 2013, with the notable exception of tooth pain due to permanent caries with more than 200 million incident cases in 2013. Conversely, leading chronic sequelae were largely attributable to non-communicable diseases, with prevalence estimates for asymptomatic permanent caries and tension-type headache of 2∙4 billion and 1∙6 billion, respectively. The distribution of the number of sequelae in populations varied widely across regions, with an expected relation between age and disease prevalence. YLDs for both sexes increased from 537∙6 million in 1990 to 764∙8 million in 2013 due to population growth and ageing, whereas the age-standardised rate decreased little from 114∙87 per 1000 people to 110∙31 per 1000 people between 1990 and 2013. Leading causes of YLDs included low back pain and major depressive disorder among the top ten causes of YLDs in every country. YLD rates per person, by major cause groups, indicated the main drivers of increases were due to musculoskeletal, mental, and substance use disorders, neurological disorders, and chronic respiratory diseases; however HIV/AIDS was a notable driver of increasing YLDs in sub-Saharan Africa. Also, the proportion of disability-adjusted life years due to YLDs increased globally from 21·1% in 1990 to 31·2% in 2013. Interpretation Ageing of the world’s population is leading to a substantial increase in the numbers of individuals with sequelae of diseases and injuries. Rates of YLDs are declining much more slowly than mortality rates. The non-fatal dimensions of disease and injury will require more and more attention from health systems. The transition to nonfatal outcomes as the dominant source of burden of disease is occurring rapidly outside of sub-Saharan Africa. Our results can guide future health initiatives through examination of epidemiological trends and a better understanding of variation across countries.
Resumo:
We have genotyped 14,436 nonsynonymous SNPs (nsSNPs) and 897 major histocompatibility complex (MHC) tag SNPs from 1,000 independent cases of ankylosing spondylitis (AS), autoimmune thyroid disease (AITD), multiple sclerosis (MS) and breast cancer (BC). Comparing these data against a common control dataset derived from 1,500 randomly selected healthy British individuals, we report initial association and independent replication in a North American sample of two new loci related to ankylosing spondylitis, ARTS1 and IL23R, and confirmation of the previously reported association of AITD with TSHR and FCRL3. These findings, enabled in part by increased statistical power resulting from the expansion of the control reference group to include individuals from the other disease groups, highlight notable new possibilities for autoimmune regulation and suggest that IL23R may be a common susceptibility factor for the major 'seronegative' diseases.
Resumo:
Background The Global Burden of Disease Study 2013 (GBD 2013) aims to bring together all available epidemiological data using a coherent measurement framework, standardised estimation methods, and transparent data sources to enable comparisons of health loss over time and across causes, age–sex groups, and countries. The GBD can be used to generate summary measures such as disability-adjusted life-years (DALYs) and healthy life expectancy (HALE) that make possible comparative assessments of broad epidemiological patterns across countries and time. These summary measures can also be used to quantify the component of variation in epidemiology that is related to sociodemographic development. Methods We used the published GBD 2013 data for age-specific mortality, years of life lost due to premature mortality (YLLs), and years lived with disability (YLDs) to calculate DALYs and HALE for 1990, 1995, 2000, 2005, 2010, and 2013 for 188 countries. We calculated HALE using the Sullivan method; 95% uncertainty intervals (UIs) represent uncertainty in age-specific death rates and YLDs per person for each country, age, sex, and year. We estimated DALYs for 306 causes for each country as the sum of YLLs and YLDs; 95% UIs represent uncertainty in YLL and YLD rates. We quantified patterns of the epidemiological transition with a composite indicator of sociodemographic status, which we constructed from income per person, average years of schooling after age 15 years, and the total fertility rate and mean age of the population. We applied hierarchical regression to DALY rates by cause across countries to decompose variance related to the sociodemographic status variable, country, and time. Findings Worldwide, from 1990 to 2013, life expectancy at birth rose by 6·2 years (95% UI 5·6–6·6), from 65·3 years (65·0–65·6) in 1990 to 71·5 years (71·0–71·9) in 2013, HALE at birth rose by 5·4 years (4·9–5·8), from 56·9 years (54·5–59·1) to 62·3 years (59·7–64·8), total DALYs fell by 3·6% (0·3–7·4), and age-standardised DALY rates per 100 000 people fell by 26·7% (24·6–29·1). For communicable, maternal, neonatal, and nutritional disorders, global DALY numbers, crude rates, and age-standardised rates have all declined between 1990 and 2013, whereas for non–communicable diseases, global DALYs have been increasing, DALY rates have remained nearly constant, and age-standardised DALY rates declined during the same period. From 2005 to 2013, the number of DALYs increased for most specific non-communicable diseases, including cardiovascular diseases and neoplasms, in addition to dengue, food-borne trematodes, and leishmaniasis; DALYs decreased for nearly all other causes. By 2013, the five leading causes of DALYs were ischaemic heart disease, lower respiratory infections, cerebrovascular disease, low back and neck pain, and road injuries. Sociodemographic status explained more than 50% of the variance between countries and over time for diarrhoea, lower respiratory infections, and other common infectious diseases; maternal disorders; neonatal disorders; nutritional deficiencies; other communicable, maternal, neonatal, and nutritional diseases; musculoskeletal disorders; and other non-communicable diseases. However, sociodemographic status explained less than 10% of the variance in DALY rates for cardiovascular diseases; chronic respiratory diseases; cirrhosis; diabetes, urogenital, blood, and endocrine diseases; unintentional injuries; and self-harm and interpersonal violence. Predictably, increased sociodemographic status was associated with a shift in burden from YLLs to YLDs, driven by declines in YLLs and increases in YLDs from musculoskeletal disorders, neurological disorders, and mental and substance use disorders. In most country-specific estimates, the increase in life expectancy was greater than that in HALE. Leading causes of DALYs are highly variable across countries. Interpretation Global health is improving. Population growth and ageing have driven up numbers of DALYs, but crude rates have remained relatively constant, showing that progress in health does not mean fewer demands on health systems. The notion of an epidemiological transition—in which increasing sociodemographic status brings structured change in disease burden—is useful, but there is tremendous variation in burden of disease that is not associated with sociodemographic status. This further underscores the need for country-specific assessments of DALYs and HALE to appropriately inform health policy decisions and attendant actions.
Resumo:
Introduction Two symposia on “cardiovascular diseases and vulnerable plaques” Cardiovascular disease (CVD) is the leading cause of death worldwide. Huge effort has been made in many disciplines including medical imaging, computational modeling, bio- mechanics, bioengineering, medical devices, animal and clinical studies, population studies as well as genomic, molecular, cellular and organ-level studies seeking improved methods for early detection, diagnosis, prevention and treatment of these diseases [1-14]. However, the mechanisms governing the initiation, progression and the occurrence of final acute clinical CVD events are still poorly understood. A large number of victims of these dis- eases who are apparently healthy die suddenly without prior symptoms. Available screening and diagnostic methods are insufficient to identify the victims before the event occurs [8,9]. Most cardiovascular diseases are associated with vulnerable plaques. A grand challenge here is to develop new imaging techniques, predictive methods and patient screening tools to identify vulnerable plaques and patients who are more vulnerable to plaque rupture and associated clinical events such as stroke and heart attack, and recommend proper treatment plans to prevent those clinical events from happening. Articles in this special issue came from two symposia held recently focusing on “Cardio-vascular Diseases and Vulnerable Plaques: Data, Modeling, Predictions and Clinical Applications.” One was held at Worcester Polytechnic Institute (WPI), Worcester, MA, USA, July 13-14, 2014, right after the 7th World Congress of Biomechanics. This symposium was endorsed by the World Council of Biomechanics, and partially supported by a grant from NIH-National Institute of Biomedical Image and Bioengineering. The other was held at Southeast University (SEU), Nanjing, China, April 18-20, 2014.
Resumo:
Fortunately, plants have developed highly effective mechanisms with which to defend themselves when attacked by potentially disease-causing microorganisms. If not, then they would succumb to the many pathogenic fungi, bacteria, viruses, nematodes and insect pests, and disease would prevail. These natural defence systems of plants can be deliberately activated to provide some protection against the major pathogens responsible for causing severe yield losses in agricultural and horticultural crops. This is the basis of what is known as ‘induced’ or ‘acquired’ disease resistance in plants. Although the phenomenon of induced resistance has been known amongst plant pathologists for over 100 years, its inclusion into pest and disease management programmes has been a relatively recent development, ie. within the last 5 years. This review will discuss very briefly some of the characteristics of the induced resistance phenomenon, outline some of the advantages and limitations to its implementation and provide some examples within a postharvest pathology context. Finally some approaches being investigated by the fruit pathology team at DPI Indooroopilly and collaborators will be outlined.
Resumo:
Wildlife populations are affected by a series of emerging diseases, some of which pose a significant threat to their conservation. They can also be reservoirs of pathogens that threaten domestic animal and human health. In this paper, we review the ecology of two viruses that have caused significant disease in domestic animals and humans and are carried by wild fruit bats in Asia and Australia. The first, Hendra virus, has caused disease in horses and/or humans in Australia every five years since it first emerged in 1994. Nipah virus has caused a major outbreak of disease in pigs and humans in Malaysia in the late 1990s and has also caused human mortalities in Bangladesh annually since 2001. Increased knowledge of fruit bat population dynamics and disease ecology will help improve our understanding of processes driving the emergence of diseases from bats. For this, a transdisciplinary approach is required to develop appropriate host management strategies that both maximise the conservation of bat populations as well as minimise the risk of disease outbreaks in domestic animals and humans.