834 resultados para Homeostasis Model Assessment
Resumo:
This study investigated cow characteristics, farm facilities, and herd management strategies during the dry period to examine their joint influence on somatic cell counts (SCC) in early lactation. Data from 52 commercial dairy farms throughout England and Wales were collected over a 2-yr period. For the purpose of analysis, cows were separated into those housed for the dry period (6,419 cow-dry periods) and those at pasture (7,425 cow-dry periods). Bayesian multilevel models were specified with 2 response variables: ln SCC (continuous) and SCC >199,000 cells/mL (binary), both within 30 d of calving. Cow factors associated with an increased SCC after calving were parity, an SCC >199,000 cells/mL in the 60 d before drying off, increasing milk yield 0 to 30 d before drying off, and reduced DIM after calving at the time of SCC estimation. Herd management factors associated with an increased SCC after calving included procedures at drying off, aspects of bedding management, stocking density, and method of pasture grazing. Posterior predictions were used for model assessment, and these indicated that model fit was generally good. The research demonstrated that specific dry-period management strategies have an important influence on SCC in early lactation.
Resumo:
Background: The different body components may contribute to the development of insulin resistance and type 2 diabetes mellitus. The aim of the present study was to examine the association of fat mass and fat free mass indices with markers of insulin resistance, independently of each other and giving, at the same time, gender-specific information in a wide cohort of European adolescents. Methods: A cross-sectional study in a school setting was conducted in 925 (430 males) adolescents (14.9 ± 1.2 years). Weight, height, anthropometric, bioimpedance and blood parameters were measured. Indices for fat mass and fat free mass, and homeostatic model assessment (HOMA) were calculated. Multiple regression analyses were performed adjusting for several confounders including fat free mass and fat mass when possible. Results: Indices of fat mass were positively associated with HOMA (all p < 0.01) after adjusting for all the confounders including fat free mass indices, in both sexes. Fat free mass indices were associated with HOMA, in both males and females, after adjusting for center, pubertal status, socioeconomic status and cardiorespiratory fitness, but the associations disappear when including fat mass indices in the adjustment's model. Conclusion: Fat mass indices derived from different methods are positively associated with insulin resistance independently of several confounders including fat free mass indices. In addition, the relationship of fat free mass with insulin resistance is influenced by the amount of fat mass in European adolescents. Nevertheless, future studies should focus not only on the role of fat mass, but also on other body components such as fat free mass because its role could vary depending of the level and distribution of fat mass.
Resumo:
Practitioners and academics have developed numerous maturity models for many domains in order to measure competency. These initiatives have often been influenced by the Capability Maturity Model. However, an accumulative effort has not been made to generalize the phases of developing a maturity model in any domain. This paper proposes such a methodology and outlines the main phases of generic model development. The proposed methodology is illustrated with the help of examples from two advanced maturity models in the domains of Business Process Management and Knowledge Management.
Resumo:
This paper will report on the evaluation of a new undergraduate legal workplace unit, LWB421 Learning in Professional Practice. LWB421 was developed in response to the QUT’s strategic planning and a growing view that work experience is essential to developing the skills that law graduates need in order to be effective legal practitioners (Stuckey, 2007). Work integrated learning provides a context for students to develop their skills, to see the link between theory and practice and support students in making the transition from university to practice (Shirley, 2006). The literature in Australian legal education has given little consideration to the design of legal internship subjects (as distinct from legal clinic programs). Accordingly the design of placement subjects needs to be carefully considered to ensure alignment of learning objectives, learning tasks and assessment. Legal placements offer students the opportunity to develop their professional skills in practice, reflect on their own learning and job performance and take responsibility for their career development and planning. This paper will examine the literature relating to the design of placement subjects, particularly in a legal context. It will propose a collaborative model to facilitate learning and assessment of legal work placement subjects. The basis of the model is a negotiated learning contract between the student, workplace supervisor and academic supervisor. Finally the paper will evaluate the model in the context of LWB421. The evaluation will be based on data from surveys of students and supervisors and focus group sessions.
Resumo:
There is currently a strong focus worldwide on the potential of large-scale Electronic Health Record (EHR) systems to cut costs and improve patient outcomes through increased efficiency. This is accomplished by aggregating medical data from isolated Electronic Medical Record databases maintained by different healthcare providers. Concerns about the privacy and reliability of Electronic Health Records are crucial to healthcare service consumers. Traditional security mechanisms are designed to satisfy confidentiality, integrity, and availability requirements, but they fail to provide a measurement tool for data reliability from a data entry perspective. In this paper, we introduce a Medical Data Reliability Assessment (MDRA) service model to assess the reliability of medical data by evaluating the trustworthiness of its sources, usually the healthcare provider which created the data and the medical practitioner who diagnosed the patient and authorised entry of this data into the patient’s medical record. The result is then expressed by manipulating health record metadata to alert medical practitioners relying on the information to possible reliability problems.
Resumo:
Electronic Health Record (EHR) systems are being introduced to overcome the limitations associated with paper-based and isolated Electronic Medical Record (EMR) systems. This is accomplished by aggregating medical data and consolidating them in one digital repository. Though an EHR system provides obvious functional benefits, there is a growing concern about the privacy and reliability (trustworthiness) of Electronic Health Records. Security requirements such as confidentiality, integrity, and availability can be satisfied by traditional hard security mechanisms. However, measuring data trustworthiness from the perspective of data entry is an issue that cannot be solved with traditional mechanisms, especially since degrees of trust change over time. In this paper, we introduce a Time-variant Medical Data Trustworthiness (TMDT) assessment model to evaluate the trustworthiness of medical data by evaluating the trustworthiness of its sources, namely the healthcare organisation where the data was created and the medical practitioner who diagnosed the patient and authorised entry of this data into the patient’s medical record, with respect to a certain period of time. The result can then be used by the EHR system to manipulate health record metadata to alert medical practitioners relying on the information to possible reliability problems.
Resumo:
The current policy decision making in Australia regarding non-health public investments (for example, transport/housing/social welfare programmes) does not quantify health benefits and costs systematically. To address this knowledge gap, this study proposes an economic model for quantifying health impacts of public policies in terms of dollar value. The intention is to enable policy-makers in conducting economic evaluation of health effects of non-health policies and in implementing policies those reduce health inequalities as well as enhance positive health gains of the target population. Health Impact Assessment (HIA) provides an appropriate framework for this study since HIA assesses the beneficial and adverse effects of a programme/policy on public health and on health inequalities through the distribution of those effects. However, HIA usually tries to influence the decision making process using its scientific findings, mostly epidemiological and toxicological evidence. In reality, this evidence can not establish causal links between policy and health impacts since it can not explain how an individual or a community reacts to changing circumstances. The proposed economic model addresses this health-policy linkage using a consumer choice approach that can explain changes in group and individual behaviour in a given economic set up. The economic model suggested in this paper links epidemiological findings with economic analysis to estimate the health costs and benefits of public investment policies. That is, estimating dollar impacts when health status of the exposed population group changes by public programmes – for example, transport initiatives to reduce congestion by building new roads/ highways/ tunnels etc. or by imposing congestion taxes. For policy evaluation purposes, the model is incorporated in the HIA framework by establishing association among identified factors, which drive changes in the behaviour of target population group and in turn, in the health outcomes. The economic variables identified to estimate the health inequality and health costs are levels of income, unemployment, education, age groups, disadvantaged population groups, mortality/morbidity etc. However, though the model validation using case studies and/or available database from Australian non-health policy (say, transport) arena is in the future tasks agenda, it is beyond the scope of this current paper.
Resumo:
In the age of climate change and rapid urbanisation, stormwater management and water sensitive urban design have become important issues for urban policy makers. This paper reports the initial findings of a research study that develops an indexing model for assessing stormwater quality in the Gold Coast.
Resumo:
Introduction The purpose of this study was to develop, implement and evaluate the impact of an educational intervention, comprising an innovative model of clinical decisionmaking and educational delivery strategy for facilitating nursing students‘ learning and development of competence in paediatric physical assessment practices. Background of the study Nursing students have an undergraduate education that aims to produce graduates of a generalist nature who demonstrate entry level competence for providing nursing care in a variety of health settings. Consistent with population morbidity and health care roles, paediatric nursing concepts typically form a comparatively small part of undergraduate curricula and students‘ exposure to paediatric physical assessment concepts and principles are brief. However, the nursing shortage has changed traditional nursing employment patterns and new graduates form the majority of the recruitment pool for paediatric nursing speciality staff. Paediatric nursing is a popular career choice for graduates and anecdotal evidence suggests that nursing students who select a clinical placement in their final year intend to seek employment in paediatrics upon graduation. Although concepts of paediatric nursing are included within undergraduate curriculum, students‘ ability to develop the required habits of mind to practice in what is still regarded as a speciality area of practice is somewhat limited. One of the areas of practice where this particularly impacts is in paediatric nursing physical assessment. Physical assessment is a fundamental component of nursing practice and competence in this area of practice is central to nursing students‘ development of clinical capability for practice as a registered nurse. Timely recognition of physiologic deterioration of patients is a key outcome of nurses‘ competent use of physical assessment strategies, regardless of the practice context. In paediatric nursing contexts children‘s physical assessment practices must specifically accommodate the child‘s different physiological composition, function and pattern of clinical deterioration (Hockenberry & Barrera, 2007). Thus, to effectively manage physical assessment of patients within the paediatric practice setting nursing students need to integrate paediatric nursing theory into their practice. This requires significant information processing and it is in this process where students are frequently challenged. The provision of rules or models can guide practice and assist novice-level nurses to develop their capabilities (Benner, 1984; Benner, Hooper-Kyriakidis & Stannard, 1999). Nursing practice models are cognitive tools that represent simplified patterns of expert analysis employing concepts that suit the limited reasoning of the inexperienced, and can represent the =rules‘ referred to by Benner (1984). Without a practice model of physical assessment students are likely to be uncertain about how to proceed with data collection, the interpretation of paediatric clinical findings and the appraisal of findings. These circumstances can result in ad hoc and unreliable nursing physical assessment that forms a poor basis for nursing decisions. The educational intervention developed as part of this study sought to resolve this problem and support nursing students‘ development of competence in paediatric physical assessment. Methods This study utilised the Context Input Process Product (CIPP) Model by Stufflebeam (2004) as the theoretical framework that underpinned the research design and evaluation methodology. Each of the four elements in the CIPP model were utilised to guide discrete stages of this study. The Context element informed design of the clinical decision-making process, the Paediatric Nursing Physical Assessment model. The Input element was utilised in appraising relevant literature, identifying an appropriate instructional methodology to facilitate learning and educational intervention delivery to undergraduate nursing students, and development of program content (the CD-ROM kit). Study One employed the Process element and used expert panel approaches to review and refine instructional methods, identifying potential barriers to obtaining an effective evaluation outcome. The Product element guided design and implementation of Study Two, which was conducted in two phases. Phase One employed a quasiexperimental between-subjects methodology to evaluate the impact of the educational intervention on nursing students‘ clinical performance and selfappraisal of practices in paediatric physical assessment. Phase Two employed a thematic analysis and explored the experiences and perspectives of a sample subgroup of nursing students who used the PNPA CD-ROM kit as preparation for paediatric clinical placement. Results Results from the Process review in Study One indicated that the prototype CDROM kit containing the PNPA model met the predetermined benchmarks for face validity and the impact evaluation instrumentation had adequate content validity in comparison with predetermined benchmarks. In the first phase of Study Two the educational intervention did not result in statistically significant differences in measures of student performance or self-appraisal of practice. However, in Phase Two qualitative commentary from students, and from the expert panel who reviewed the prototype CD-ROM kit (Study One, Phase One), strongly endorsed the quality of the intervention and its potential for supporting learning. This raises questions regarding transfer of learning and it is likely that, within this study, several factors have influenced students‘ transfer of learning from the educational intervention to the clinical practice environment, where outcomes were measured. Conclusion In summary, the educational intervention employed in this study provides insights into the potential e-learning approaches offer for delivering authentic learning experiences to undergraduate nursing students. Findings in this study raise important questions regarding possible pedagogical influences on learning outcomes, issues within the transfer of theory to practice and factors that may have influenced findings within the context of this study. This study makes a unique contribution to nursing education, specifically with respect to progressing an understanding of the challenges faced in employing instructive methods to impact upon nursing students‘ development of competence. The important contribution transfer of learning processes make to students‘ transition into the professional practice context and to their development of competence within the context of speciality practice is also highlighted. This study contributes to a greater awareness of the complexity of translating theoretical learning at undergraduate level into clinical practice, particularly within speciality contexts.
Resumo:
Purpose – In recent years, knowledge-based urban development (KBUD) has introduced as a new strategic development approach for the regeneration of industrial cities. It aims to create a knowledge city consists of planning strategies, IT networks and infrastructures that achieved through supporting the continuous creation, sharing, evaluation, renewal and update of knowledge. Improving urban amenities and ecosystem services by creating sustainable urban environment is one of the fundamental components for KBUD. In this context, environmental assessment plays an important role in adjusting urban environment and economic development towards a sustainable way. The purpose of this paper is to present the role of assessment tools for environmental decision making process of knowledge cities. Design/methodology/approach – The paper proposes a new assessment tool to figure a template of a decision support system which will enable to evaluate the possible environmental impacts in an existing and future urban context. The paper presents the methodology of the proposed model named ‘ASSURE’ which consists of four main phases. Originality/value –The proposed model provides a useful guidance to evaluate the urban development and its environmental impacts to achieve sustainable knowledge-based urban futures. Practical implications – The proposed model will be an innovative approach to provide the resilience and function of urban natural systems secure against the environmental changes while maintaining the economic development of cities.
Resumo:
Measuring the comparative sustainability levels of cities, regions, institutions and projects is an essential procedure in creating sustainable urban futures. This paper introduces a new urban sustainability assessment model: “The Sustainable Infrastructure, Land-use, Environment and Transport Model (SILENT)”. The SILENT Model is an advanced geographic information system and indicator-based comparative urban sustainability indexing model. The model aims to assist planners and policy makers in their daily tasks in sustainable urban planning and development by providing an integrated sustainability assessment framework. The paper gives an overview of the conceptual framework and components of the model and discusses the theoretical constructs, methodological procedures, and future development of this promising urban sustainability assessment model.
Resumo:
We present a hierarchical model for assessing an object-oriented program's security. Security is quantified using structural properties of the program code to identify the ways in which `classified' data values may be transferred between objects. The model begins with a set of low-level security metrics based on traditional design characteristics of object-oriented classes, such as data encapsulation, cohesion and coupling. These metrics are then used to characterise higher-level properties concerning the overall readability and writability of classified data throughout the program. In turn, these metrics are then mapped to well-known security design principles such as `assigning the least privilege' and `reducing the size of the attack surface'. Finally, the entire program's security is summarised as a single security index value. These metrics allow different versions of the same program, or different programs intended to perform the same task, to be compared for their relative security at a number of different abstraction levels. The model is validated via an experiment involving five open source Java programs, using a static analysis tool we have developed to automatically extract the security metrics from compiled Java bytecode.
Resumo:
Regardless of technology benefits, safety planners still face difficulties explaining errors related to the use of different technologies and evaluating how the errors impact the performance of safety decision making. This paper presents a preliminary error impact analysis testbed to model object identification and tracking errors caused by image-based devices and algorithms and to analyze the impact of the errors for spatial safety assessment of earthmoving and surface mining activities. More specifically, this research designed a testbed to model workspaces for earthmoving operations, to simulate safety-related violations, and to apply different object identification and tracking errors on the data collected and processed for spatial safety assessment. Three different cases were analyzed based on actual earthmoving operations conducted at a limestone quarry. Using the testbed, the impacts of the errors were investigated for the safety planning purpose.
Resumo:
Australian universities are currently engaging with new governmental policies and regulations that require them to demonstrate enhanced quality and accountability in teaching and research. The development of national academic standards for learning outcomes in higher education is one such instance of this drive for excellence. These discipline-specific standards articulate the minimum, or Threshold Learning Outcomes, to be addressed by higher education institutions so that graduating students can demonstrate their achievement to their institutions, accreditation agencies, and industry recruiters. This impacts not only on the design of Engineering courses (with particular emphasis on pedagogy and assessment), but also on the preparation of academics to engage with these standards and implement them in their day-to-day teaching practice on a micro level. This imperative for enhanced quality and accountability in teaching is also significant at a meso level, for according to the Australian Bureau of Statistics, about 25 per cent of teachers in Australian universities are aged 55 and above and more than 54 per cent are aged 45 and above (ABS, 2006). A number of institutions have undertaken recruitment drives to regenerate and enrich their academic workforce by appointing capacity-building research professors and increasing the numbers of early- and mid-career academics. This nationally driven agenda for quality and accountability in teaching permeates also the micro level of engineering education, since the demand for enhanced academic standards and learning outcomes requires both a strong advocacy for a shift to an authentic, collaborative, outcomes-focused education and the mechanisms to support academics in transforming their professional thinking and practice. Outcomes-focused education means giving greater attention to the ways in which the curriculum design, pedagogy, assessment approaches and teaching activities can most effectively make a positive, verifiable difference to students’ learning. Such education is authentic when it is couched firmly in the realities of learning environments, student and academic staff characteristics, and trustworthy educational research. That education will be richer and more efficient when staff works collaboratively, contributing their knowledge, experience and skills to achieve learning outcomes based on agreed objectives. We know that the school or departmental levels of universities are the most effective loci of changes in approaches to teaching and learning practices in higher education (Knight & Trowler, 2000). Heads of Schools are being increasingly entrusted with more responsibilities - in addition to setting strategic directions and managing the operational and sometimes financial aspects of their school, they are also expected to lead the development and delivery of the teaching, research and other academic activities. Guiding and mentoring individuals and groups of academics is one critical aspect of the Head of School’s role. Yet they do not always have the resources or support to help them mentor staff, especially the more junior academics. In summary, the international trend in undergraduate engineering course accreditation towards the demonstration of attainment of graduate attributes poses new challenges in addressing academic staff development needs and the assessment of learning. This paper will give some insights into the conceptual design, implementation and empirical effectiveness to date, of a Fellow-In-Residence Engagement (FIRE) program. The program is proposed as a model for achieving better engagement of academics with contemporary issues and effectively enhancing their teaching and assessment practices. It will also report on the program’s collaborative approach to working with Heads of Schools to better support academics, especially early-career ones, by utilizing formal and informal mentoring. Further, the paper will discuss possible factors that may assist the achievement of the intended outcomes of such a model, and will examine its contributions to engendering an outcomes-focussed thinking in engineering education.