911 resultados para Holstein dairy cow
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Com o objetivo de determinar a prevalência, classificar clinicamente e estabelecer os fatores epidemiológicos das enfermidades podais em vacas lactantes de propriedades localizadas na bacia leiteira do município de Rondon do Pará, foram avaliadas 1.236 vacas, das quais 275 apresentaram pelo menos um tipo de lesão podal, identificando-se 655 lesões e verificando-se uma prevalência de 22,25%. As enfermidades mais frequentemente diagnosticadas foram: hiperplasia interdigital, correspondendo a 80,92 %, seguida por pododermatite séptica difusa com 6,11%, crescimento excessivo do casco com 3,82%, casco em forma de tesoura com 2,60% e pododermatite da sobre unha com 2,44%. Os membros pélvicos foram os mais acometidos com 61,83% do total das lesões, sendo o espaço interdigital, tanto nos membros torácicos com 36,34%, como nos pélvicos com 48,09%, a região digital acometida com maior frequência. O estudo epidemiológico mostrou que as características ambientais (relevo montanhoso, pastagem em formação com presença de troncos e galhos de árvores, irregularidades nos pisos dos currais, presença de piçarra e lama) favorecem o aparecimento das lesões podais. Constatou-se a ausência de medida de controle e profilaxia com relação às afecções que acometem os cascos em 95,5% das propriedades estudadas. O exame clínico específico do casco foi eficiente no diagnóstico das enfermidades.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study aimed to evaluate season, breed, number of lactations and milk production as risk factors relating to Rhipicephalus microplus infestation in dairy cows during the peripartum. Eighty-four animals were randomly selected through proportional stratified sampling. All engorged and partially engorged female R. microplus specimens measuring 4.5-8.0 mm were counted during the 5 weeks before calving, calving week and 5 weeks after calving. The peripartum had a significant effect [calving (p < 0.05; prevalence ratio (PR)= 3.12) and post calving (p < 0.05; PR = 2.02)] on R. microplus infestation. Although the average tick count was higher during the rainy season than during the dry season, there was no significant difference (p = 0.055; PR = 0.63). The average R. microplus count was significantly higher (p < 0.05; PR = 2.10) in Bos taurus animals, followed by F1 (p < 0.05; PR = 1.64) and Girolando (p < 0.05; PR = 1.39). The average R. microplus count was significantly higher (p < 0.05; PR = 0.97) in first-lactation animals, followed by those at the second, third and, fourth or subsequent lactation. Milk production showed a negative correlation with R. microplus count, such that high-production animals were significantly (p = 0.003; PR = 2.04) more vulnerable to infestation than were low-production animals. First-lactation and high-production B. taurus animals had greatest vulnerability to R. microplus infestation over the peripartum period, and constituted the at-risk group in the dairy herd.u
Resumo:
Pós-graduação em Zootecnia - FMVZ
Resumo:
Pós-graduação em Zootecnia - FCAV
Resumo:
Milk that is adequate for consumption must be of hygienic quality, nutritional value, and should maintain its organoleptic properties. Isolation of fecal and/or total coliforms from bovine milk is considered an indicator of hygiene and good management practices, and can be used as a quality indicator. This study aimed to isolate, identify, and assess the resistance profile of coliforms isolated from collective bulk tanks and individual milk tanks. A total of 89 milk samples were collected from collective bulk tanks and, from these, 21 Klebsiella spp., one E. coli, and 29 Enterobacter spp. were isolated, whereas 102 milk samples from individual tanks showed isolation of one Klebsiella spp. and seven Enterobacter spp. In collective bulk tanks, at least 47% of Klebsiella spp. and Enterobacter spp. were resistant to cephalexin and 30% to ampicillin. From these, at least 24% showed multidrug resistance. Among the microorganisms isolated from the individual tanks, 85% or more were resistant to ampicillin. The ESBL phenotype and the blaTEM gene were detected in strains of Klebsiella spp. isolated from both tanks. It was concluded that contamination of milk with resistant total coliforms, and especially the storage of raw milk from several small producers in the collective bulk tank increase the risk of contamination.
Resumo:
The objective of this study was to validate three different models for predicting milk urea nitrogen using field conditions, attempting to evaluate the nutritional adequacy diets for dairy cows and prediction of nitrogen excreted to the environment. Observations (4,749) from 855 cows were used. Milk yield, body weight (BW), days in milk and parity were recorded on the milk sampling days. Milk was sampled monthly, for analysis of milk urea nitrogen (MUN), fat, protein, lactose and total solids concentration and somatic cells count. Individual dry matter intake was estimated using the NRC (2001). The three models studied were derived from a first one to predict urinary nitrogen (UN). Model 1 was MUN = UN/12.54, model 2 was MUN = UN/17.6 and model 3 was MUN = UN/(0.0259 × BW), adjusted by body weight effect. To evaluate models, they were tested for accuracy, precision and robustness. Despite being more accurate (mean bias = 0.94 mg/dL), model 2 was less precise (residual error = 4.50 mg/dL) than model 3 (mean bias = 1.41 and residual error = 4.11 mg/dL), while model 1 was the least accurate (mean bias = 6.94 mg/dL) and the least precise (residual error = 5.40 mg/dL). They were not robust, because they were influenced by almost all the variables studied. The three models for predicting milk urea nitrogen were different with respect to accuracy, precision and robustness.
Resumo:
Although interest in crossbreeding within dairy systems has increased, the role of Jersey crossbred cows within high concentrate input systems has received little attention. This experiment was designed to examine the performance of Holstein-Friesian (HF) and Jersey x Holstein-Friesian (J x HF) cows within a high concentrate input total confinement system (CON) and a medium concentrate input grazing system (GRZ). Eighty spring-calving dairy cows were used in a 2 (cow genotype) x 2 (milk production system) factorial design experiment. The experiment commenced when cows calved and encompassed a full lactation. With GRZ, cows were offered diets containing grass silage and concentrates [70:30 dry matter (DM) ratio] until turnout, grazed grass plus 1.0 kg of concentrate/day during a 199-d grazing period, and grass silage and concentrates (75:25 DM ratio) following rehousing and until drying-off. With CON, cows were confined throughout the lactation and offered diets containing grass silage and concentrates (DM ratio; 40:60, 50:50, 40:40, and 75:25 during d 1 to 100, 101 to 200, 201 to 250, and 251 until drying-off, respectively). Full-lactation concentrate DM intakes were 791 and 2,905 kg/cow for systems GRZ and CON, respectively. Although HF cows had a higher lactation milk yield than J x HF cows, the latter produced milk with a higher fat and protein content, so that solids-corrected milk yield (SCM) was unaffected by genotype. Somatic cell score was higher with the J x HF cows. Throughout lactation, HF cows were on average 37 kg heavier than J x HF cows, whereas the J x HF cows had a higher body condition score. Within each system, food intake did not differ between genotypes, whereas full-lactation yields of milk, fat plus protein, and SCM were higher with CON than with GRZ. A significant genotype x environment interaction was observed for milk yield, and a trend was found for an interaction with SCM. Crossbred cows on CON gained more body condition than HF cows, and overall pregnancy rate was unaffected by either genotype or management system. In summary, milk and SCM yields were higher with CON than with GRZ, whereas genotype had no effect on SCM. However, HF cows exhibited a greater milk yield response and a trend toward a greater SCM yield response with increasing concentrate levels compared with the crossbred cows.
Resumo:
The relationship between lameness and feeding behaviour in dairy cows is not yet fully understood. This study examined the effect of lameness on feeding behaviour at two points during lactation. Forty-five Holstein–Friesian dairy cows (average parity 3.3) were housed in cubicle accommodation after calving and fed a total mixed ration (TMR). At approximately 60 and 120 days post partum, 48 h of information on feeding behaviour (including number of meals eaten, meal duration, meal size and feeding rate) was collected for each animal using feed boxes fitted to a data recording system. At the same time points, locomotion scores were recorded for each cow as a measure of lameness (1.0-sound to 4.5-severely lame). Relationships between feeding behaviour and locomotion score were analysed using Residual Maximum Likelihood (REML) analysis. At both time points, cows with higher locomotion scores ate fewer (P < 0.001), larger meals (P < 0.001) and had a shorter total feeding time (P < 0.001). At day 60 post partum, an increase in locomotion score was associated with a decrease in dry matter intake (P < 0.05), but at day 120 post partum no relationship was found between locomotion score and DMI. No relationship was found at either time point between locomotion score and mean meal duration or rate of feeding. The results of this study suggest that the effect of lameness on feeding behaviour in dairy cows does not remain constant across lactation.
Resumo:
Until recently, measurements of energy expenditure (EE; herein defined as heat production) in respiration chambers did not account for the extra energy requirements of grazing dairy cows on pasture. As energy is first limiting in most pasture-based milk production systems, its efficient use is important. Therefore, the aim of the present study was to compare EE, which can be affected by differences in body weight (BW), body composition, grazing behavior, physical activity, and milk production level, in 2 Holstein cow strains. Twelve Swiss Holstein-Friesian (HCH; 616 kg of BW) and 12 New Zealand Holstein-Friesian (HNZ; 570 kg of BW) cows in the third stage of lactation were paired according to their stage of lactation and kept in a rotational, full-time grazing system without concentrate supplementation. After adaption, the daily milk yield, grass intake using the alkane double-indicator technique, nutrient digestibility, physical activity, and grazing behavior recorded by an automatic jaw movement recorder were investigated over 7d. Using the (13)C bicarbonate dilution technique in combination with an automatic blood sampling system, EE based on measured carbon dioxide production was determined in 1 cow pair per day between 0800 to 1400 h. The HCH were heavier and had a lower body condition score compared with HNZ, but the difference in BW was smaller compared with former studies. Milk production, grass intake, and nutrient digestibility did not differ between the 2 cow strains, but HCH grazed for a longer time during the 6-h measurement period and performed more grazing mastication compared with the HNZ. No difference was found between the 2 cow strains with regard to EE (291 ± 15.6 kJ) per kilogram of metabolic BW, mainly due to a high between-animal variation in EE. As efficiency and energy use are important in sustainable, pasture-based, organic milk production systems, the determining factors for EE, such as methodology, genetics, physical activity, grazing behavior, and pasture quality, should be investigated and quantified in more detail in future studies.
Resumo:
A diverse range of concentrate allocation strategies are adopted on dairy farms. The objectives of this study were to examine the effects on cow performance [dry matter (DM) intake (DMI), milk yield and composition, body tissue changes, and fertility] of adopting 2 contrasting concentrate allocation strategies over the first 140 d of lactation. Seventy-seven Holstein-Friesian dairy cows were allocated to 1 of 2 concentrate allocation strategies at calving, namely group or individual cow. Cows on the group strategy were offered a mixed ration comprising grass silage and concentrates in a 50:50 ratio on a DM basis. Cows on the individual cow strategy were offered a basal mixed ration comprising grass silage and concentrates (the latter included in the mix to achieve a mean intake of 6 kg/cow per day), which was formulated to meet the cow’s energy requirements for maintenance plus 24 kg of milk/cow per day. Additional concentrates were offered via an out-of-parlor feeding system, with the amount offered adjusted weekly based on each individual cow’s milk yield during the previous week. In addition, all cows received a small quantity of straw in the mixed ration part of the diet (approximately 0.3 kg/cow per day), plus 0.5 kg of concentrate twice daily in the milking parlor. Mean concentrate intakes over the study period were similar with each of the 2 allocation strategies (11.5 and 11.7 kg of DM/cow per day for group and individual cow, respectively), although the pattern of intake with each treatment differed over time. Concentrate allocation strategy had no effect on either milk yield (39.3 and 38.0 kg/d for group and individual cow, respectively), milk composition, or milk constituent yield. The milk yield response curves with each treatment were largely aligned with the concentrate DMI curves. Cows on the individual cow treatment had a greater range of concentrate DMI and milk yields than those on the group treatment. With the exception of a tendency for cows on the individual cow treatment to lose more body weight to nadir than cows on the group treatment, concentrate allocation strategy had little effect on either body weight or body condition score over the experimental period. Cows on the individual cow treatment had a higher pregnancy rate to first and second service and tended to have a higher 100-d in calf rate than cows on the group treatment. This study demonstrates that concentrate allocation strategy had little effect on overall production performance.
Resumo:
This study investigated the responses by dairy cows grazing Callide Rhodes grass (Chloris gayana cv. Callide) pasture to supplementation with barley or sorghum based concentrates (5 grain:1 cotton seed meal) or barley concentrate plus lucerne (Medicago sativa) hay. It was conducted in summer - autumn 1999 with 20 spring calved cows in 4 treatments in 3 consecutive periods of 4 weeks. Rain grown pastures, heavily stocked at 4.4 cows/ha, provided 22 to 35 kg green DM and 14 to 16 kg green leaf DM/cow.day in periods 1 to 3. Supplements were fed individually twice daily after milking. Cows received 6 kg concentrate/day in period 1, increased by 1 kg/day as barley, sorghum or lucerne chaff in each of periods 2 and 3. The Control treatment received 6 kg barley concentrate in all 3 periods. Milk yields by cows fed sorghum were lower than for cows fed equivalent levels of barley-based concentrate (P<0.05). Faecal starch levels (14, 18 and 17%) for cows fed sorghum concentrate were much higher (P<0.01) than those of cows fed similar levels of barley (2.1, 1.2 and 1.7%) in each period respectively. Additional supplementation as lucerne chaff did not increase milk production (P>0.05). Increased concentrate supplementation did not alleviate the problem of low protein in milk produced by freshly calved Holstein-Friesian cows grazing tropical grass pasture in summer. Animal production for a consuming world : proceedings of 9th Congress of the Asian-Australasian Association of Animal Production Societies [AAAP] and 23rd Biennial Conference of the Australian Society of Animal Production [ASAP] and 17th Annual Symposium of the University of Sydney, Dairy Research Foundation, [DRF]. 2-7 July 2000, Sydney, Australia.
Resumo:
M. T. Rose, T. E. C. Weekes and P. Rowlinson (2004). Individual variation in the milk yield response to bovine somatotropin in dairy cows. Journal of Dairy Science, 87(7), 2024-2031. Sponsorship: industry RAE2008