888 resultados para Holomorphic Functions
Resumo:
Cryptographic hash functions are an important tool of cryptography and play a fundamental role in efficient and secure information processing. A hash function processes an arbitrary finite length input message to a fixed length output referred to as the hash value. As a security requirement, a hash value should not serve as an image for two distinct input messages and it should be difficult to find the input message from a given hash value. Secure hash functions serve data integrity, non-repudiation and authenticity of the source in conjunction with the digital signature schemes. Keyed hash functions, also called message authentication codes (MACs) serve data integrity and data origin authentication in the secret key setting. The building blocks of hash functions can be designed using block ciphers, modular arithmetic or from scratch. The design principles of the popular Merkle–Damgård construction are followed in almost all widely used standard hash functions such as MD5 and SHA-1.
Resumo:
We analyse the security of iterated hash functions that compute an input dependent checksum which is processed as part of the hash computation. We show that a large class of such schemes, including those using non-linear or even one-way checksum functions, is not secure against the second preimage attack of Kelsey and Schneier, the herding attack of Kelsey and Kohno and the multicollision attack of Joux. Our attacks also apply to a large class of cascaded hash functions. Our second preimage attacks on the cascaded hash functions improve the results of Joux presented at Crypto’04. We also apply our attacks to the MD2 and GOST hash functions. Our second preimage attacks on the MD2 and GOST hash functions improve the previous best known short-cut second preimage attacks on these hash functions by factors of at least 226 and 254, respectively. Our herding and multicollision attacks on the hash functions based on generic checksum functions (e.g., one-way) are a special case of the attacks on the cascaded iterated hash functions previously analysed by Dunkelman and Preneel and are not better than their attacks. On hash functions with easily invertible checksums, our multicollision and herding attacks (if the hash value is short as in MD2) are more efficient than those of Dunkelman and Preneel.
Resumo:
In this paper we present concrete collision and preimage attacks on a large class of compression function constructions making two calls to the underlying ideal primitives. The complexity of the collision attack is above the theoretical lower bound for constructions of this type, but below the birthday complexity; the complexity of the preimage attack, however, is equal to the theoretical lower bound. We also present undesirable properties of some of Stam’s compression functions proposed at CRYPTO ’08. We show that when one of the n-bit to n-bit components of the proposed 2n-bit to n-bit compression function is replaced by a fixed-key cipher in the Davies-Meyer mode, the complexity of finding a preimage would be 2 n/3. We also show that the complexity of finding a collision in a variant of the 3n-bits to 2n-bits scheme with its output truncated to 3n/2 bits is 2 n/2. The complexity of our preimage attack on this hash function is about 2 n . Finally, we present a collision attack on a variant of the proposed m + s-bit to s-bit scheme, truncated to s − 1 bits, with a complexity of O(1). However, none of our results compromise Stam’s security claims.
Resumo:
Halevi and Krawczyk proposed a message randomization algorithm called RMX as a front-end tool to the hash-then-sign digital signature schemes such as DSS and RSA in order to free their reliance on the collision resistance property of the hash functions. They have shown that to forge a RMX-hash-then-sign signature scheme, one has to solve a cryptanalytical task which is related to finding second preimages for the hash function. In this article, we will show how to use Dean’s method of finding expandable messages for finding a second preimage in the Merkle-Damgård hash function to existentially forge a signature scheme based on a t-bit RMX-hash function which uses the Davies-Meyer compression functions (e.g., MD4, MD5, SHA family) in 2 t/2 chosen messages plus 2 t/2 + 1 off-line operations of the compression function and similar amount of memory. This forgery attack also works on the signature schemes that use Davies-Meyer schemes and a variant of RMX published by NIST in its Draft Special Publication (SP) 800-106. We discuss some important applications of our attack.
Resumo:
In the modern era of information and communication technology, cryptographic hash functions play an important role in ensuring the authenticity, integrity, and nonrepudiation goals of information security as well as efficient information processing. This entry provides an overview of the role of hash functions in information security, popular hash function designs, some important analytical results, and recent advances in this field.
Resumo:
Mode indicator functions (MIFs) are used in modal testing and analysis as a means of identifying modes of vibration, often as a precursor to modal parameter estimation. Various methods have been developed since the MIF was introduced four decades ago. These methods are quite useful in assisting the analyst to identify genuine modes and, in the case of the complex mode indicator function, have even been developed into modal parameter estimation techniques. Although the various MIFs are able to indicate the existence of a mode, they do not provide the analyst with any descriptive information about the mode. This paper uses the simple summation type of MIF to develop five averaged and normalised MIFs that will provide the analyst with enough information to identify whether a mode is longitudinal, vertical, lateral or torsional. The first three functions, termed directional MIFs, have been noted in the literature in one form or another; however, this paper introduces a new twist on the MIF by introducing two MIFs, termed torsional MIFs, that can be used by the analyst to identify torsional modes and, moreover, can assist in determining whether the mode is of a pure torsion or sway type (i.e., having a rigid cross-section) or a distorted twisting type. The directional and torsional MIFs are tested on a finite element model based simulation of an experimental modal test using an impact hammer. Results indicate that the directional and torsional MIFs are indeed useful in assisting the analyst to identify whether a mode is longitudinal, vertical, lateral, sway, or torsion.
Resumo:
We propose a new information-theoretic metric, the symmetric Kullback-Leibler divergence (sKL-divergence), to measure the difference between two water diffusivity profiles in high angular resolution diffusion imaging (HARDI). Water diffusivity profiles are modeled as probability density functions on the unit sphere, and the sKL-divergence is computed from a spherical harmonic series, which greatly reduces computational complexity. Adjustment of the orientation of diffusivity functions is essential when the image is being warped, so we propose a fast algorithm to determine the principal direction of diffusivity functions using principal component analysis (PCA). We compare sKL-divergence with other inner-product based cost functions using synthetic samples and real HARDI data, and show that the sKL-divergence is highly sensitive in detecting small differences between two diffusivity profiles and therefore shows promise for applications in the nonlinear registration and multisubject statistical analysis of HARDI data.
Resumo:
Cancer is the second leading cause of death with 14 million new cases and 8.2 million cancer-related deaths worldwide in 2012. Despite the progress made in cancer therapies, neoplastic diseases are still a major therapeutic challenge notably because of intra- and inter-malignant tumour heterogeneity and adaptation/escape of malignant cells to/from treatment. New targeted therapies need to be developed to improve our medical arsenal and counter-act cancer progression. Human kallikrein-related peptidases (KLKs) are secreted serine peptidases which are aberrantly expressed in many cancers and have great potential in developing targeted therapies. The potential of KLKs as cancer biomarkers is well established since the demonstration of the association between KLK3/PSA (prostate specific antigen) levels and prostate cancer progression. In addition, a constantly increasing number of in vitro and in vivo studies demonstrate the functional involvement of KLKs in cancer-related processes. These peptidases are now considered key players in the regulation of cancer cell growth, migration, invasion, chemo-resistance, and importantly, in mediating interactions between cancer cells and other cell populations found in the tumour microenvironment to facilitate cancer progression. These functional roles of KLKs in a cancer context further highlight their potential in designing new anti-cancer approaches. In this review, we comprehensively review the biochemical features of KLKs, their functional roles in carcinogenesis, followed by the latest developments and the successful utility of KLK-based therapeutics in counteracting cancer progression.
Resumo:
We present a generalization of the finite volume evolution Galerkin scheme [M. Lukacova-Medvid'ova,J. Saibertov'a, G. Warnecke, Finite volume evolution Galerkin methods for nonlinear hyperbolic systems, J. Comp. Phys. (2002) 183 533-562; M. Luacova-Medvid'ova, K.W. Morton, G. Warnecke, Finite volume evolution Galerkin (FVEG) methods for hyperbolic problems, SIAM J. Sci. Comput. (2004) 26 1-30] for hyperbolic systems with spatially varying flux functions. Our goal is to develop a genuinely multi-dimensional numerical scheme for wave propagation problems in a heterogeneous media. We illustrate our methodology for acoustic waves in a heterogeneous medium but the results can be generalized to more complex systems. The finite volume evolution Galerkin (FVEG) method is a predictor-corrector method combining the finite volume corrector step with the evolutionary predictor step. In order to evolve fluxes along the cell interfaces we use multi-dimensional approximate evolution operator. The latter is constructed using the theory of bicharacteristics under the assumption of spatially dependent wave speeds. To approximate heterogeneous medium a staggered grid approach is used. Several numerical experiments for wave propagation with continuous as well as discontinuous wave speeds confirm the robustness and reliability of the new FVEG scheme.
Resumo:
The hydrodynamic modes and the velocity autocorrelation functions for a dilute sheared inelastic fluid are analyzed using an expansion in the parameter epsilon=(1-e)(1/2), where e is the coefficient of restitution. It is shown that the hydrodynamic modes for a sheared inelastic fluid are very different from those for an elastic fluid in the long-wave limit, since energy is not a conserved variable when the wavelength of perturbations is larger than the ``conduction length.'' In an inelastic fluid under shear, there are three coupled modes, the mass and the momenta in the plane of shear, which have a decay rate proportional to k(2/3) in the limit k -> 0, if the wave vector has a component along the flow direction. When the wave vector is aligned along the gradient-vorticity plane, we find that the scaling of the growth rate is similar to that for an elastic fluid. The Fourier transforms of the velocity autocorrelation functions are calculated for a steady shear flow correct to leading order in an expansion in epsilon. The time dependence of the autocorrelation function in the long-time limit is obtained by estimating the integral of the Fourier transform over wave number space. It is found that the autocorrelation functions for the velocity in the flow and gradient directions decay proportional to t(-5/2) in two dimensions and t(-15/4) in three dimensions. In the vorticity direction, the decay of the autocorrelation function is proportional to t(-3) in two dimensions and t(-7/2) in three dimensions.
Resumo:
A new finite element is developed for free vibration analysis of high speed rotating beams using basis functions which use a linear combination of the solution of the governing static differential equation of a stiff-string and a cubic polynomial. These new shape functions depend on rotation speed and element position along the beam and account for the centrifugal stiffening effect. The natural frequencies predicted by the proposed element are compared with an element with stiff-string, cubic polynomial and quintic polynomial shape functions. It is found that the new element exhibits superior convergence compared to the other basis functions.
Resumo:
The appealing concept of optimal harvesting is often used in fisheries to obtain new management strategies. However, optimality depends on the objective function, which often varies, reflecting the interests of different groups of people. The aim of maximum sustainable yield is to extract the greatest amount of food from replenishable resources in a sustainable way. Maximum sustainable yield may not be desirable from an economic point of view. Maximum economic yield that maximizes the profit of fishing fleets (harvesting sector) but ignores socio-economic benefits such as employment and other positive externalities. It may be more appropriate to use the maximum economic yield that which is based on the value chain of the overall fishing sector, to reflect better society's interests. How to make more efficient use of a fishery for society rather than fishing operators depends critically on the gain function parameters including multiplier effects and inclusion or exclusion of certain costs. In particular, the optimal effort level based on the overall value chain moves closer to the optimal effort for the maximum sustainable yield because of the multiplier effect. These issues are illustrated using the Australian Northern Prawn Fishery.
Resumo:
Following Ioffe's method of QCD sum rules the structure functions F2(x) for deep inelastic ep and en scattering are calculated. Valence u-quark and d-quark distributions are obtained in the range 0.1 less, approximate x <0.4 and compared with data. In the case of polarized targets the structure function g1(x) and the asymmetry Image Full-size image are calculated. The latter is in satisfactory agreement in sign and magnitude with experiments for x in the range 0.1< x < 0.4.
Resumo:
Robust methods are useful in making reliable statistical inferences when there are small deviations from the model assumptions. The widely used method of the generalized estimating equations can be "robustified" by replacing the standardized residuals with the M-residuals. If the Pearson residuals are assumed to be unbiased from zero, parameter estimators from the robust approach are asymptotically biased when error distributions are not symmetric. We propose a distribution-free method for correcting this bias. Our extensive numerical studies show that the proposed method can reduce the bias substantially. Examples are given for illustration.
Resumo:
Recent work on the violent relaxation of collisionless stellar systems has been based on the notion of a wide class of entropy functions. A theorem concerning entropy increase has been proved. We draw attention to some underlying assumptions that have been ignored in the applications of this theorem to stellar dynamical problems. Once these are taken into account, the use of this theorem is at best heuristic. We present a simple counter-example.