914 resultados para High-energy milling
Resumo:
Using high-energy (∼0.5 GeV) electron beams generated by laser wakefield acceleration (LWFA), bremsstrahlung radiation was created by interacting these beams with various solid targets. Secondary processes generate high-energy electrons, positrons, and neutrons, which can be measured shot-to-shot using magnetic spectrometers, short half-life activation, and Compton scattering. Presented here are proof-of-principle results from a high-resolution, high-energy gamma-ray spectrometer capable of single-shot operation, and high repetition rate activation diagnostics. We describe the techniques used in these measurements and their potential applications in diagnosing LWFA electron beams and measuring high-energy radiation from laser-plasma interactions.
Resumo:
By using polycapillary lenses to focus laser-produced x-ray sources to high intensities, an improvement in signal-to-noise ratio can be achieved. Here the He-alpha line emission produced by driving a titanium backlighter target is focused by a polycapillary lens and the output characterized. The x-ray spot is measured to have a peak intensity of 4.5 x 10(7) photons, with a total photon count of 8.8 x 10(8) in 0.13 +/- 0.01 mm(2). This setup is equivalent to placing the backlighter target 3 mm from the sample with a 600 mu m diameter pinhole. The polycapillary lens enables the placement of the backlighter target at a much larger distance from the sample to be studied and therefore has the ability to greatly improve the signal-to-noise ratio on detectors. We demonstrate this with two simple diffraction experiments using pyrolytic graphite and polycrystalline aluminium.
Resumo:
We present a new regime to generate high-energy quasimonoenergetic proton beams in a "slow-pulse" regime, where the laser group velocity vg<c is reduced by an extended near-critical density plasma. In this regime, for properly matched laser intensity and group velocity, ions initially accelerated by the light sail (LS) mode can be further trapped and reflected by the snowplough potential generated by the laser in the near-critical density plasma. These two acceleration stages are connected by the onset of Rayleigh-Taylor-like (RT) instability. The usual ion energy spectrum broadening by RT instability is controlled and high quality proton beams can be generated. It is shown by multidimensional particle-in-cell simulation that quasimonoenergetic proton beams with energy up to hundreds of MeV can be generated at laser intensities of 1021W/cm2.
Resumo:
A scheme for enhanced quantum electrodynamics (QED) production of electron-positron-pair plasmas is proposed that uses two ultraintense lasers irradiating a thin solid foil from opposite sides. In the scheme, under a proper matching condition, in addition to the skin-depth emission of gamma-ray photons and Breit-Wheeler creation of pairs on each side of the foil, a large number of high-energy electrons and photons from one side can propagate through it and interact with the laser on the other side, leading to much enhanced gamma-ray emission and pair production. More importantly, the created pairs can be collected later and confined to the center by opposite laser radiation pressures when the foil becomes transparent, resulting in the formation of unprecedentedly overdense and high-energy pair plasmas. Two-dimensional QED particle-in-cell simulations show that electron-positron-pair plasmas with overcritical density 10(22) cm(-3) and a high energy of 100s of MeV are obtained with 10 PW lasers at intensities 10(23) W/cm(2), which are of key significance for laboratory astrophysics studies.
Resumo:
The paper presents the calibration of Fuji BAS-TR image plate (IP) response to high energy carbon ions of different charge states by employing an intense laser-driven ion source, which allowed access to carbon energies up to 270 MeV. The calibration method consists of employing a Thomson parabola spectrometer to separate and spectrally resolve different ion species, and a slotted CR-39 solid state detector overlayed onto an image plate for an absolute calibration of the IP signal. An empirical response function was obtained which can be reasonably extrapolated to higher ion energies. The experimental data also show that the IP response is independent of ion charge states.
Resumo:
High-energy irradiation of exoplanets has been identified to be a key influence on the stability of these planets' atmospheres. So far, irradiation-driven mass-loss has been observed only in two Hot Jupiters, and the observational data remain even more sparse in the super-Earth regime. We present an investigation of the high-energy emission in the CoRoT-7 system, which hosts the first known transiting super-Earth. To characterize the high-energy XUV radiation field into which the rocky planets CoRoT-7b and CoRoT-7c are immersed, we analyzed a 25 ks XMM-Newton observation of the host star. Our analysis yields the first clear (3.5σ) X-ray detection of CoRoT-7. We determine a coronal temperature of ≈ 3 MK and an X-ray luminosity of 3 × 1028 erg s-1. The level of XUV irradiation on CoRoT-7b amounts to ≈37 000 erg cm-2 s-1. Current theories for planetary evaporation can only provide an order-of-magnitude estimate for the planetary mass loss; assuming that CoRoT-7b has formed as a rocky planet, we estimate that CoRoT-7b evaporates at a rate of about 1.3 × 1011 g s-1 and has lost ≈4-10 earth masses in total.
Resumo:
State-of-the-art high power lasers can exert immense pressure on thin foils which can be used to accelerate energetic ion beams efficiently at the laser plasma interface.
Resumo:
γ-Ray sources are among the most fundamental experimental tools currently available to modern physics. As well as the obvious benefits to fundamental research, an ultra-bright source of γ-rays could form the foundation of scanning of shipping containers for special nuclear materials and provide the bases for new types of cancer therapy.
However, for these applications to prove viable, γ-ray sources must become compact and relatively cheap to manufacture. In recent years, advances in laser technology have formed the cornerstone of optical sources of high energy electrons which already have been used to generate synchrotron radiation on a compact scale. Exploiting the scattering induced by a second laser, one can further enhance the energy and number of photons produced provided the problems of synchronisation and compact γ-ray detection are solved.
Here, we report on the work that has been done in developing an all-optical and hence, compact non-linear Thomson scattering source, including the new methods of synchronisation and compact γ-ray detection. We present evidence of the generation of multi-MeV (maximum 16–18 MeV) and ultra-high brilliance (exceeding 1020 photons s−1mm−2mrad−2 0.1% BW at 15 MeV) γ-ray beams. These characteristics are appealing for the paramount practical applications mentioned above.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Organic nonlinear optical single crystals of Methyl para-Hydroxy Benzoate (MHB) have been grown using gel-solution technique. These crystals are cut along z-axis and are bombarded with Ag14+ ions of energy 100 MeV. The results show an increase in refractive index at the ion irradiated region. The dielectric constant of the irradiated crystal is increased more than 15 times compared to that of a nonirradiated crystal. The result of these changes and comparative study of second harmonic generation (SHG) efficiency before and after irradiation is discussed.
Resumo:
We have investigated the effects of swift heavy ion irradiation on thermally evaporated 44 nm thick, amorphous Co77Fe23 thin films on silicon substrates using 100 MeV Ag7+ ions fluences of 1 1011 ions/ cm2, 1 1012 ions/cm2, 1 1013 ions/cm2, and 3 1013 ions/cm2. The structural modifications upon swift heavy irradiation were investigated using glancing angle X-ray diffraction. The surface morphological evolution of thin film with irradiation was studied using Atomic Force Microscopy. Power spectral density analysis was used to correlate the roughness variation with structural modifications investigated using X-ray diffraction. Magnetic measurements were carried out using vibrating sample magnetometry and the observed variation in coercivity of the irradiated films is explained on the basis of stress relaxation. Magnetic force microscopy images are subjected to analysis using the scanning probe image processor software. These results are in agreement with the results obtained using vibrating sample magnetometry. The magnetic and structural properties are correlated
Resumo:
Predicting metal bioaccumulation and toxicity in soil organisms is complicated by site-specific biotic and abiotic parameters. In this study we exploited tissue fractionation and digestion techniques, combined with X-ray absorption spectroscopy (XAS), to investigate the whole-body and subcellular distributions, ligand affinities, and coordination chemistry of accumulated Pb and Zn in field populations of the epigeic earthworm Lumbricus rubellus inhabiting three contrasting metalliferous and two unpolluted soils. Our main findings were (i) earthworms were resident in soils with concentrations of Pb and Zn ranging from 1200 to 27 000 mg kg(-1) and 200 to 34 000 mg kg(-1), respectively; (ii) Pb and Zn primarily accumulated in the posterior alimentary canal in nonsoluble subcellular fractions of earthworms; (iii) site-specific differences in the tissue and subcellular partitioning profiles of populations were observed, with earthworms from a calcareous site partitioning proportionally more Pb to their anterior body segments and Zn to the chloragosome-rich subcellular fraction than their acidic-soil inhabiting counterparts; (iv) XAS indicated that the interpopulation differences in metal partitioning between organs were not accompanied by qualitative differences in ligand-binding speciation, because crystalline phosphate-containing pyromorphite was a predominant chemical species in the whole-worm tissues of all mine soil residents. Differences in metal (Pb, Zn) partitioning at both organ and cellular levels displayed by field populations with protracted histories of metal exposures may reflect their innate ecophysiological responses to essential edaphic variables, such as Ca2+ status. These observations are highly significant in the challenging exercise of interpreting holistic biomarker data delivered by "omic" technologies.
Resumo:
We report the results of variational calculations of the rovibrational energy levels of HCN for J = 0, 1 and 2, where we reproduce all the ca. 100 observed vibrational states for all observed isotopic species, with energies up to 18000 cm$^{-1}$, to about $\pm $1 cm$^{-1}$, and the corresponding rotational constants to about $\pm $0.001 cm$^{-1}$. We use a hamiltonian expressed in internal coordinates r$_{1}$, r$_{2}$ and $\theta $, using the exact expression for the kinetic energy operator T obtained by direct transformation from the cartesian representation. The potential energy V is expressed as a polynomial expansion in the Morse coordinates y$_{i}$ for the bond stretches and the interbond angle $\theta $. The basis functions are built as products of appropriately scaled Morse functions in the bond-stretches and Legendre or associated Legendre polynomials of cos $\theta $ in the angle bend, and we evaluate matrix elements by Gauss quadrature. The hamiltonian matripx is factorized using the full rovibrational symmetry, and the basis is contracted to an optimized form; the dimensions of the final hamiltonian matrix vary from 240 $\times $ 240 to 1000 $\times $ 1000.We believe that our calculation is converged to better than 1 cm$^{-1}$ at 18 000 cm$^{-1}$. Our potential surface is expressed in terms of 31 parameters, about half of which have been refined by least squares to optimize the fit to the experimental data. The advantages and disadvantages and the future potential of calculations of this type are discussed.
Resumo:
Limit-feeding dry cows a high-energy diet may enable adequate energy intake to be sustained as parturition approaches, thus reducing the extent of negative energy balance after parturition. Our objective was to evaluate the effect of dry period feeding strategy on plasma concentrations of hormones and metabolites that reflect energy status. Multiparous Holstein cows (n = 18) were dried off 45 d before expected parturition, paired by expected calving date, parity, and previous lactation milk yield, and randomly assigned to 1 of 2 dry-period diets formulated to meet nutrient requirements at ad libitum or limited intakes. All cows were fed the same diet for ad libitum intake after parturition. Prepartum dry matter intake (DMI) for limit-fed cows was 9.4 kg/d vs. 13.7 kg/d for cows fed ad libitum. During the dry period, limit-fed cows consumed enough feed to meet calculated energy requirements, and ad libitum-fed cows were in positive calculated net energy for lactation (NEL) balance (0.02 vs. 6.37 Mcal/d, respectively). After parturition, milk yield, milk protein concentration, DMI, body condition score, and body weight were not affected by the prepartum treatments. Cows limit fed during the dry period had a less-negative calculated energy balance during wk 1 postpartum. Milk fat concentration and yield were greater for the ad libitum treatment during wk 1 but were lower in wk 2 and 3 postpartum. Plasma insulin and glucose concentrations decreased after calving. Plasma insulin concentration was greater in ad libitum-fed cows on d -2 relative to calving, but did not differ by dietary treatment at other times. Plasma glucose concentrations were lower before and after parturition for cows limit-fed during the dry period. Plasma nonesterified fatty acid concentrations peaked after parturition on d 1 and 4 for the limit-fed and ad libitum treatments, respectively, and were greater for limit-fed cows on d -18, -9, -5, and -2. Plasma tumor necrosis factor-alpha concentrations did not differ by treatment in either the pre- or postpartum period, but tended to decrease after parturition. Apart from a reduction in body energy loss in the first week after calving, limit feeding a higher NEL diet during the dry period had little effect on intake and milk production during the first month of lactation.