974 resultados para High reactivity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic fish oil intervention had been shown to have a positive impact on endothelial function. Although high-fat meals have often been associated with a loss of postprandial vascular reactivity, studies examining the effects of fish oil fatty acids on vascular function in the postprandial phase are limited. The aim of the present study was to examine the impact of the addition of fish oil fatty acids to a standard test meal on postprandial vascular reactivity. A total of 25 men received in a random order either a placebo oil meal (40 g of mixed fat; fatty acid profile representative of the U.K. diet) or a fish oil meal (31 g of mixed fat and 9 g of fish oil) on two occasions. Vascular reactivity was measured at baseline (0 h) and 4 h after the meal by laser Doppler iontophoresis, and blood samples were taken for the measurement of plasma lipids, total nitrite, glucose and insulin. eNOS (endothelial NO synthase) and NADPH oxidase gene expression were determined in endothelial cells after incubation with TRLs (triacylglycerol-rich lipoproteins) isolated from the plasma samples taken at 4 h. Compared with baseline, sodium nitroprusside (an endothelium-independent vasodilator)-induced reactivity (P = 0.024) and plasma nitrite levels (P = 0.001) were increased after the fish oil meal. In endothelial cells, postprandial TRLs isolated after the fish oil meal increased eNOS and decreased NADPH oxidase gene expression compared with TRLs isolated following the placebo oil meal (P <= 0.03). In conclusion, meal fatty acids appear to be an important determinant of vascular reactivity, with fish oils significantly improving postprandial endothelium-independent vasodilation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The monomeric tin(II) species SnR2{R = C(SiMe3)2C5H4N-2} reacts with [Os3(H)2(CO)10] in hexane to give [Os3(µ-H)SnR(CO)10]1 quantitatively; 1 is the first formal stannyne complex of the triosmium nucleus, in which the picoline nitrogen is coordinated to the tin atom, and which is itself also reactive, being a potential precursor to high nuclearity SnOs clusters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The beneficial effects of green tea catechins, such as the proposed improvement in endothelial function, may be influenced by phase II metabolism during and after absorption. The methylation enzyme, catechol-O-methyltransferase (COMT), has a missense mutation rs4680 (G to A), proposed to result in a 40 % reduction in enzyme activity. In the present pilot study, twenty subjects (ten of each homozygous COMT genotype) were recruited. Green tea extract capsules (836 mg green tea catechins) were given in a fasted state, and a high-carbohydrate breakfast was given after 60 min. Blood samples and vascular function measurements were taken at regular intervals. The change in digital volume pulse stiffness index (SI) from baseline was shown to be different between genotype groups at 120 and 240 min, with a lower SI in the GG individuals (P ≤ 0·044). The change in blood pressure from baseline also differed between genotype groups, with a greater increase in systolic (P = 0·023) and diastolic (P = 0·034) blood pressure at 120 min in the GG group. The AA group was shown to have a greater increase in insulin concentrations at 120 min (P = 0·019) and 180 min (P = 0·008) compared with baseline, despite similar glucose profiles. No genotypic differences were found in vascular reactivity measured using laser Doppler iontophoresis, total nitrite, lipids, plasma total antioxidant capacity or inflammatory markers after ingestion of the green tea extract. In conclusion, SI and insulin response to the glucose load differed between the COMT genotype groups, and this may be suggestive of a green tea extract and genotype interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several new coordinatively unsaturated iron(II) complexes of the types [Fe(EN-iPr)X2] (E = P, S, Se; X = Cl, Br) and [Fe(ON-iPr)2X]X containing bidentate EN ligands based on N-(2-pyridinyl)aminophosphines as well as oxo, thio, and seleno derivatives thereof were prepared and characterized by NMR spectroscopy and X-ray crystallography. Mössbauer spectroscopy and magnetization studies confirmed their high-spin nature with magnetic moments very close to 4.9 μB, reflecting the expected four unpaired d-electrons in all these compounds. Stable low-spin carbonyl complexes of the types [Fe(PN-iPr)2(CO)X]X (X = Cl, Br) and cis-CO,cis-Br-[Fe(PN-iPr)(CO)2X2] (X = Br) were obtained by reacting cis-Fe(CO)4X2 with the stronger PN donor ligands, but not with the weaker EN donor ligands (E = O, S, Se). Furthermore, the reactivity of [Fe(PN-iPr)X2] toward CO was investigated by IR spectroscopy. Whereas at room temperature no reaction took place, at −50 °C [Fe(PN-iPr)X2] added readily CO to form, depending on the nature of X, the mono- and dicarbonyl complexes [Fe(PN-iPr)(X)2(CO)] (X = Cl) and [Fe(PN-iPr)(CO)2X2] (X = Cl, Br), respectively. In the case of X = Br, two isomeric dicarbonyl complexes, namely, cis-CO,trans-Br-[Fe(PN-iPr)(CO)2Br2] (major species) and cis-CO,cis-Br-[Fe(PN-iPr)(CO)2Br2] (minor species), are formed. The addition of CO to [Fe(PN-iPr)X2] was investigated in detail by means of DFT/B3LYP calculations. This study strongly supports the experimental findings that at low temperature two isomeric low-spin dicarbonyl complexes are formed. For kinetic reasons cis,trans-[Fe(PN-iPr)(CO)2Br2] releases CO at elevated temperature, re-forming [Fe(PN-iPr)Br2], while the corresponding cis,cis isomer is stable under these conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Observed associations between increased fruit and vegetable (F&V) consumption, particularly those F&Vs that are rich in flavonoids, and vascular health improvements require confirmation in adequately powered randomized controlled trials. OBJECTIVE: This study was designed to measure the dose-response relation between high-flavonoid (HF), low-flavonoid (LF), and habitual F&V intakes and vascular function and other cardiovascular disease (CVD) risk indicators. DESIGN: A single-blind, dose-dependent, parallel randomized controlled dietary intervention study was conducted. Male and female low-F&V consumers who had a ≥1.5-fold increased risk of CVD (n = 174) were randomly assigned to receive an HF F&V, an LF F&V, or a habitual diet, with HF and LF F&V amounts sequentially increasing by 2, 4, and 6 (+2, +4, and +6) portions/d every 6 wk over habitual intakes. Microvascular reactivity (laser Doppler imaging with iontophoresis), arterial stiffness [pulse wave velocity, pulse wave analysis (PWA)], 24-h ambulatory blood pressure, and biomarkers of nitric oxide (NO), vascular function, and inflammation were determined at baseline and at 6, 12, and 18 wk. RESULTS: In men, the HF F&V diet increased endothelium-dependent microvascular reactivity (P = 0.017) with +2 portions/d (at 6 wk) and reduced C-reactive protein (P = 0.001), E-selectin (P = 0.0005), and vascular cell adhesion molecule (P = 0.0468) with +4 portions/d (at 12 wk). HF F&Vs increased plasma NO (P = 0.0243) with +4 portions/d (at 12 wk) in the group as a whole. An increase in F&Vs, regardless of flavonoid content in the groups as a whole, mitigated increases in vascular stiffness measured by PWA (P = 0.0065) and reductions in NO (P = 0.0299) in the control group. CONCLUSION: These data support recommendations to increase F&V intake to ≥6 portions daily, with additional benefit from F&Vs that are rich in flavonoids, particularly in men with an increased risk of CVD. This trial was registered at www.controlled-trials.com as ISRCTN47748735.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relaxing action of sodium nitroprusside (SNP) was significantly reduced in the stomach fundus of mice lacking the kinin B(1) receptor (B(1)(-/-)). Increased basal cGMP accumulation was correlated with attenuated SNP induced dose-dependent relaxation in B(1)(-/-) when compared with wild type (WT) control mice. These responses to SNP were completely blocked by the guanylate cyclase inhibitor ODQ(10 mu M). It was also found that Ca(2+)-dependent, constitutive nitric oxide synthase (cNOS) activity was unchanged but the Ca(2+)-independent inducible NOS (iNOS) activity was greater in B(1)(-/-) mice than in WT animals. Zaprinast (100 mu M), a specific phosphodiesterase inhibitor, increased the nitrergic relaxations and the accumulation of the basal as well as the SNP-stimulated cGMP in WT but not in B(1)(-/-) stomach fundus. From these findings it is concluded that the inhibited phosphodiesterase activity and high level of cGMP reduced the resting muscle tone, impairing the relaxant responses of the stomach in B(1)(-/-) mice. In addition, it can be suggested that functional B(2) receptor might be involved in the NO compensatory mechanism associated with the deficiency of kinin B(1) receptor in the gastric tissue of the transgenic mice. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The six-, eight- and twelve-membered cyclo-siloxanes, cyclo-[R2SiOSi(Ot-Bu)2O]2 (R = Me (1), Ph (2)), cyclo-(t-BuO)2Si(OSiR2)2O (R = Me (3), Ph (4)), cyclo-R2Si[OSi(Ot-Bu)2]2O (R = Me (5), Ph (6)) and cyclo-[(t-BuO)2Si(OSiMe2)2O]2 (3a) were synthesized in high yields by the reaction of (t-BuO)2Si(OH)2 and [(t-BuO)2SiOH]2O with R2SiCl2 and (R2SiCl)2O (R = Me, Ph). Compounds 1 - 6 were characterized by solution and solid-state 29Si NMR spectroscopy, electrospray mass spectrometry and osmometric molecular weight determination. The molecular structure of 4 has been determined by single crystal X-ray diffraction and features a six-membered cyclo-siloxane ring that is essentially planar. The reduction of 1 - 6 with i-Bu2AlH (DIBAL-H) led to the formation of the metastable aluminosiloxane (t-BuO)2Si(OAli-Bu2)2 (7) along with Me2SiH2 and Ph2SiH2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Allergy to peanut and tree nuts is characterised by a high frequency of life-threatening anaphylactic reactions and typically lifelong persistence. Although peanut is the most common cause of nut allergy, peanut allergic patients are frequently also sensitive to tree nuts. It is not known if this is due to cross-reactivity between peanut and tree nut allergens. In this study, the major peanut allergen Ara h 2 was cloned from peanut cDNA, expressed in E. coli cells as a His-tag fusion protein and purified using a Ni-NTA column. Immunoblotting, ELISA and basophil activation indicated by CD63 expression all confirmed the IgE reactivity and biological activity of rAra h 2. To determine whether or not this allergen plays a role in IgE cross-reactivity between peanut and tree nuts, inhibition ELISA was performed. Pre-incubation of serum from peanut allergic patients with increasing concentrations of almond or Brazil nut extract inhibited IgE binding to rAra h 2. Purified rAra h 2-specific serum IgE antibodies also bound to proteins present in almond and Brazil nut extracts by immunoblotting. This indicates that the major peanut allergen, Ara h 2, shares common IgE-binding epitopes with almond and Brazil nut allergens, which may contribute to the high incidence of tree nut sensitisation in peanut allergic individuals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The antioxidant profiles of various espresso coffees were established using HPLC with UV-absorbance detection and two rapid, simultaneous, on-line chemical assays that enabled the relative reactivity of sample components to be screened. The assays were based on (i) the colour change associated with reduction of the 2,2´-diphenyl-1-picrylhydrazyl radical (DPPH•); and (ii) the emission of light (chemiluminescence) upon reaction with acidic potassium permanganate. Results from the two approaches were similar and reflected the complex array of antioxidant species present in the samples. However, some differences in selectivity were observed. Chromatograms generated with the chemiluminescence assay contained more peaks, which was ascribed to the greater sensitivity of the reagent towards minor, readily oxidisable sample components. The three coffee samples produced closely related profiles, signifying their fundamentally similar chemical compositions and origin. Nevertheless, the overall intensity and complexity of the samples in both UV absorption and antioxidant assay chromatograms were aligned with the manufacturers description of flavour intensity and character.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

in situ high-temperature X-ray diffraction and thermal gravimetric- differential thermal analysis on room-temperature powder, as well as X-ray diffraction, Raman spectroscopy, and transmission electron microscopy on quenched powder, were applied to study crystal structure and phase transformations in Ba2Bi0.1Sc0.2Co 1.7O6-x (BBSC). Heating BBSC in air to over 800 °C produces a pure cubic phase with space group Fm3m (no. 225), and cooling down below 800 °C leads to a mixture of three noncubic phases including an unknown phase between 200 and 650 °C, a 2H hexagonal BaCoO3 with space group P63/mmc (no. 194) between 600 and 800 °C, and an intermediate phase at 800 °C. These three phases exist concurrently with the major cubic phase. The weight gain and loss between 300 and 900 °C suggest the occurrence of cobalt reduction, oxidation, and disproportion reactions with dominant reduction reaction at above 600 °C. The thermal expansion of BBSC was also examined by dilatometry. BBSC has a highly temperature-dependent thermal expansion coefficient which relates well with its structure evolution. Furthermore, the oxygen reduction reaction (ORR) of BBSC was probed by symmetrical cell and three-electrode configurations. The presence of hexagonal phase at 700 °C rarely affects the ORR performance of BBSC as evidenced by a slight increase of its area-specific resistance (ASR) value following 48 h of testing in this three-electrode configuration. This observation is in contrast to the commonly held point of view that noncubic phase deteriorates performance of perovskite compounds (especially in oxygen transport applications). Moreover, cathodic polarization treatment, for example, current discharge from BBSC (tested in three-electrode configuration), can be utilized to recover the original ORR performance. The cubic structure seems to be retained on the cathodic polarization - the normal cathode operating mode in fuel cells. Stable 72-h performance of BBSC in cathodic polarization mode further confirms that despite the presence of phase impurities, BBSC still demonstrates good performance between 500 and 700 °C, the desired intermediate operating temperature in solid oxide fuel cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liquid plasma, produced by nanosecond pulses, provides an efficient and simple way to fabricate a nanocomposite architecture of Co3O4/CNTs from carbon nanotubes (CNTs) and clusters of Co3O4 nanoparticles in deionized water. The crucial feature of the composite's structure is that Co3O4 nanoparticle clusters are uniformly dispersed and anchored to CNT networks in which Co3O4 guarantees high electrochemical reactivity towards sodium, and CNTs provide conductivity and stabilize the anode structure. We demonstrated that the Co3O4/CNT nanocomposite is capable of delivering a stable and high capacity of 403 mA h g(-1) at 50 mA g(-1) after 100 cycles where the sodium uptake/extract is confirmed in the way of reversible conversion reaction by adopting ex situ techniques. The rate capability of the composite is significantly improved and its reversible capacity is measured to be 212 mA h g(-1) at 1.6 A g(-1) and 190 mA h g(-1) at 3.2 A g(-1), respectively. Due to the simple synthesis technique with high electrochemical performance, Co3O4/CNT nanocomposites have great potential as anode materials for sodium-ion batteries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reaction of LaX3(THF)(n) (X = Cl, 1) with two equiv. of K(Tp(Me2)) gave good yields of the bis-Tp complexes [La(Tp(Me2))(2)X] (X = Cl (1); I (3)). However, the formation of 1 and 3 is always accompanied by significant amounts of La(Tp(Me2))(2)(kappa(2)-pz(Me2)) ([pz(Me2)](-) = 3,5-dimethyl-pyrazolato) (2). The pyrazolato complex 2, which presumably arises from decomposition of the [Tp(Me2)](-) moiety during salt metathesis, was independently prepared in good yield from 1 and in situ generated [pz(Me2)](-). The solid-state structures of 1 and 2 were determined by single-crystal X-ray diffraction studies. Subsequent reactions of halogeno-Tp(Me2) complexes 1 and 3 with various alkali metal salts MR (M = Li, R = CH2SiMe3, Ph, N(SiMe3)(2); M = K, R = OAr) gave M(Tp(Me2)) as the major product. Alternatively, the mono-Tp bis(aryloxide) derivatives [Ln(Tp(Me2))(OC6H2-2,6-'Bu-4-Me)(2)] (Ln = La (4); Nd (5)) were obtained in high yields by salt metathesis of [Ln(OC6H2-2,6-'Bu-4-Me)(3)] with one equiv. of K(Tp(Me2)). (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Obesity has been associated with a variety of disease such as type II diabetes mellitus, arterial hypertension and atherosclerosis. Evidences have shown that exercise training promotes beneficial effects on these disorders, but the underlying mechanisms are not fully understood. The aim of this study was to investigate whether physical preconditioning prevents the deleterious effect of high caloric diet in vascular reactivity of rat aortic and mesenteric rings. Methods. Male Wistar rats were divided into sedentary (SD); trained (TR); sedentary diet (SDD) and trained diet (TRD) groups. Run training (RT) was performed in sessions of 60 min, 5 days/week for 12 weeks (70-80% VO2max). Triglycerides, glucose, insulin and nitrite/nitrate concentrations (NOx -) were measured. Concentration- response curves to acetylcholine (ACh) and sodium nitroprusside (SNP) were obtained. Expression of Cu/Zn superoxide dismutase (SOD-1) was assessed by Western blotting. Results. High caloric diet increased triglycerides concentration (SDD: 216 ± 25 mg/dl) and exercise training restored to the baseline value (TRD: 89 ± 9 mg/dl). Physical preconditioning significantly reduced insulin levels in both groups (TR: 0.54 ± 0.1 and TRD: 1.24 ± 0.3 ng/ml) as compared to sedentary animals (SD: 0.87 ± 0.1 and SDD: 2.57 ± 0.3 ng/ml). On the other hand, glucose concentration was slightly increased by high caloric diet, and RT did not modify this parameter (SD: 126 ± 6; TR: 140 ± 8; SDD: 156 ± 8 and TRD 153 ± 9 mg/dl). Neither high caloric diet nor RT modified NO x - levels (SD: 27 ± 4; TR: 28 ± 6; SDD: 27 ± 3 and TRD: 30 ± 2 μM). Functional assays showed that high caloric diet impaired the relaxing response to ACh in mesenteric (about 13%), but not in aortic rings. RT improved the relaxing responses to ACh either in aortic (28%, for TR and 16%, to TRD groups) or mesenteric rings (10%, for TR and 17%, to TRD groups) that was accompanied by up-regulation of SOD-1 expression and reduction in triglycerides levels. Conclusion. The improvement in endothelial function by physical preconditioning in mesenteric and aortic arteries from high caloric fed-rats was directly related to an increase in NO bioavailability to the smooth muscle mostly due to SOD-1 up regulation. © 2008 de Moraes et al; licensee BioMed Central Ltd.