918 resultados para High Pressure Grinding Rolls


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a study of the three-dimensional flow field within the blade rows of a high-pressure axial flow steam turbine stage. Compound lean angles have been employed to achieve relatively low blade loading for hub and tip section and so reduce the secondary losses. The flow field is investigated in a Low-Speed Research Turbine using pneumatic and hot-wire probes downstream of the blade row. Steady and unsteady numerical simulations were performed using structured 3D Navier-Stokes solver to further understand the flow field. Agreement between the simulations and the measurements has been found. The unsteady measurements indicate that there is a significant effect of the stator flow interaction in the downstream rotor blade. The transport of the stator viscous flow through the rotor blade row is described. Unsteady numerical simulations were found to be successful in predicting accurately the flow near the secondary flow interaction regions compared to steady simulations. A method to calculate the unsteady loss generated inside the blade row was developed from the steady numerical simulations. The contribution of various regions in the blade to the unsteady loss generation was evaluated. This method can assist the designer in identifying and optimizing the features of the flow that are responsible for the majority of the unsteady loss production. An analytical model was developed to quantify this effect for the vortex transport inside the downstream blade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a study of the three-dimensional flow field within the blade rows of a high-pressure axial flow steam turbine stage. Half-delta wings were fixed to a rotating hub to simulate an upstream rotor passage vortex. The flow field is investigated in a Low-Speed Research Turbine using pneumatic and hot-wire probes downstream of the blade row. The paper examines the impact of the delta wing vortex transport on the performance of the downstream blade row. Steady and unsteady numerical simulations were performed using structured 3D Navier-Stokes solver to further understand the flow field. The loss measurements at the exit of the stator blade showed an increase in stagnation pressure loss due to the delta wing vortex transport. The increase in loss was 21% of the datum stator loss, demonstrating the importance of this vortex interaction. The transport of the stator viscous flow through the rotor blade row is also described. The rotor exit flow was affected by the interaction between the enhanced stator passage vortex and the rotor blade row. Flow underturning near the hub and overturning towards the mid-span was observed, contrary to the classical model of overturning near the hub and underturning towards the mid-span. The unsteady numerical simulation results were further analysed to identify the entropy producing regions in the unsteady flow field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate predictions of combustor hot streak migration enable the turbine designer to identify high-temperature regions that can limit component life. It is therefore important that these predictions are achieved within the short time scales of a design process. This article compares temperature measurements of a circular hot streak through a turning duct and a research turbine with predictions using a three-dimensional Reynolds-averaged Navier-Stokes solver. It was found that the mixing length turbulence model did not predict the hot streak dissipation accurately. However, implementation of a very simple model of the free stream turbulence (FST) significantly improved the exit temperature predictions on both the duct and research turbine. One advantage of the simple FST model described over more complex alternatives is that no additional equations are solved. This makes the method attractive for design purposes, as it is not associated with any increase in computational time.