990 resultados para High Altitude Grasslands
Resumo:
"June 1983."
Resumo:
"United States Atomic Energy Commission Contract W-7405-Eng. 36"--Cover.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Red blood cells (RBCs) are key players in systemic oxygen transport. RBCs respond to in vitro hypoxia through the so-called oxygen-dependent metabolic regulation, which involves the competitive binding of deoxyhemoglobin and glycolytic enzymes to the N-terminal cytosolic domain of band 3. This mechanism promotes the accumulation of 2,3-DPG, stabilizing the deoxygenated state of hemoglobin, and cytosol acidification, triggering oxygen off-loading through the Bohr effect. Despite in vitro studies, in vivo adaptations to hypoxia have not yet been completely elucidated. Within the framework of the AltitudeOmics study, erythrocytes were collected from 21 healthy volunteers at sea level, after exposure to high altitude (5260m) for 1, 7 and 16days, and following reascent after 7days at 1525m. UHPLC-MS metabolomics results were correlated to physiological and athletic performance parameters. Immediate metabolic adaptations were noted as early as a few hours from ascending to >5000m, and maintained for 16 days at high altitude. Consistent with the mechanisms elucidated in vitro, hypoxia promoted glycolysis and deregulated the pentose phosphate pathway, as well purine catabolism, glutathione homeostasis, arginine/nitric oxide and sulphur/H2S metabolism. Metabolic adaptations were preserved one week after descent, consistently with improved physical performances in comparison to the first ascendance, suggesting a mechanism of metabolic memory.
Resumo:
Objectives. To study the relationship between nocturnal periodic breathing episodes and behavioral awakenings at high altitude. Methods. Observational study. It is 6-day ascent of 4 healthy subjects from Besisahar (760 meters) to Manang (3540 meters) in Nepal in March 2012. A recording pulse oximeter was worn by each subject to measure their oxygen saturation and the presence of periodic breathing continuously through the night. An actigraph was simultaneously worn in order to determine nocturnal behavioral awakenings. There were no interventions. Results. 187-hour sleep at high altitude was analyzed, and of this, 145 hours (78%) had at least one PB event. At high altitude, 10.5% (95% CI 6.5-14.6%) of total sleep time was spent in PB while 15 out of 50 awakenings (30%, 95% CI: 18-45%) occurring at high altitudes were associated with PB (P < 0.001). Conclusions. Our data reveals a higher than expected number of behavioral awakenings associated with PB compared to what would be expected by chance. This suggests that PB likely plays a role in behavioral awakenings at high altitude.
Resumo:
The real-time optimization of large-scale systems is a difficult problem due to the need for complex models involving uncertain parameters and the high computational cost of solving such problems by a decentralized approach. Extremum-seeking control (ESC) is a model-free real-time optimization technique which can estimate unknown parameters and can optimize nonlinear time-varying systems using only a measurement of the cost function to be minimized. In this thesis, we develop a distributed version of extremum-seeking control which allows large-scale systems to be optimized without models and with minimal computing power. First, we develop a continuous-time distributed extremum-seeking controller. It has three main components: consensus, parameter estimation, and optimization. The consensus provides each local controller with an estimate of the cost to be minimized, allowing them to coordinate their actions. Using this cost estimate, parameters for a local input-output model are estimated, and the cost is minimized by following a gradient descent based on the estimate of the gradient. Next, a similar distributed extremum-seeking controller is developed in discrete-time. Finally, we consider an interesting application of distributed ESC: formation control of high-altitude balloons for high-speed wireless internet. These balloons must be steered into a favourable formation where they are spread out over the Earth and provide coverage to the entire planet. Distributed ESC is applied to this problem, and is shown to be effective for a system of 1200 ballons subjected to realistic wind currents. The approach does not require a wind model and uses a cost function based on a Voronoi partition of the sphere. Distributed ESC is able to steer balloons from a few initial launch sites into a formation which provides coverage to the entire Earth and can maintain a similar formation as the balloons move with the wind around the Earth.
Resumo:
In many countries wind energy has become an indispensable part of the electricity generation mix. The opportunity for ground based wind turbine systems are becoming more and more constrained due to limitations on turbine hub heights, blade lengths and location restrictions linked to environmental and permitting issues including special areas of conservation and social acceptance due to the visual and noise impacts. In the last decade there have been numerous proposals to harness high altitude winds, such as tethered kites, airfoils and dirigible based rotors. These technologies are designed to operate above the neutral atmospheric boundary layer of 1,300 m, which are subject to more powerful and persistent winds thus generating much higher electricity capacities. This paper presents an in-depth review of the state-of-the-art of high altitude wind power, evaluates the technical and economic viability of deploying high altitude wind power as a resource in Northern Ireland and identifies the optimal locations through considering wind data and geographical constraints. The key findings show that the total viable area over Northern Ireland for high altitude wind harnessing devices is 5109.6 km2, with an average wind power density of 1,998 W/m2 over a 20-year span, at a fixed altitude of 3,000 m. An initial budget for a 2MW pumping kite device indicated a total cost £1,751,402 thus proving to be economically viable with other conventional wind-harnessing devices.
Resumo:
The diaphragm is the primary inspiratory pump muscle of breathing. Notwithstanding its critical role in pulmonary ventilation, the diaphragm like other striated muscles is malleable in response to physiological and pathophysiological stressors, with potential implications for the maintenance of respiratory homeostasis. This review considers hypoxic adaptation of the diaphragm muscle, with a focus on functional, structural, and metabolic remodeling relevant to conditions such as high altitude and chronic respiratory disease. On the basis of emerging data in animal models, we posit that hypoxia is a significant driver of respiratory muscle plasticity, with evidence suggestive of both compensatory and deleterious adaptations in conditions of sustained exposure to low oxygen. Cellular strategies driving diaphragm remodeling during exposure to sustained hypoxia appear to confer hypoxic tolerance at the expense of peak force-generating capacity, a key functional parameter that correlates with patient morbidity and mortality. Changes include, but are not limited to: redox-dependent activation of hypoxia-inducible factor (HIF) and MAP kinases; time-dependent carbonylation of key metabolic and functional proteins; decreased mitochondrial respiration; activation of atrophic signaling and increased proteolysis; and altered functional performance. Diaphragm muscle weakness may be a signature effect of sustained hypoxic exposure. We discuss the putative role of reactive oxygen species as mediators of both advantageous and disadvantageous adaptations of diaphragm muscle to sustained hypoxia, and the role of antioxidants in mitigating adverse effects of chronic hypoxic stress on respiratory muscle function.
Resumo:
2010
Resumo:
2010
Resumo:
The genus Sporophila (Cabanis, 1844) unites about 30 species of small seedeaters that predominantly inhabit open or semi-open areas in the Neotropical region. The taxonomy of this group is based on morphological studies from collected male specimens. The dynamic spatial and temporal variation in the male plumage and lack of knowledge of their vocalizations make it difficult to properly diagnose some species even today, so these two aspects account for the existing taxonomic dilemmas involving Sporophila. During a four-year field study, we investigated the natural history of a breeding population of Sporophila melanogaster (Pelzeln, 1870). This is an endemic species in Brazil, which reproduces in the high-altitude grasslands of the Atlantic Forest biome. We found four male specimens with clearly diagnosable plumage, distinct from the typical form of the species. Here we describe this previously unreported plumage form. Based on the evaluation of habitat use, vocalization, and reproductive behavior, we tested two hypotheses regarding its taxonomic status. We concluded that this is another case of an intra-specific color morph within the seedeaters of the "capuchinos" group.
Resumo:
Tropical high altitude grasslands present several species with both microphyllous and highly sclerophyllous leaves, and co-occur in specific soil patches, thus exposed to identical environments. In this article we describe herbivory among co-occurring microphyllous species in a tropical high altitude grassland ecosystem of Serra do Cipó, Minas Gerais state, and we tested the effect of variable anatomic traits on leaf herbivory patterns. Leaf anatomical traits were investigated for Baccharis imbricata Heering , Lavoisiera imbricata DC. and L. subulata Triana (focal species). Herbivory was measured from branches and leaves of individual plants and compared among co-occurring species within one multispecific shrub patch and among L. subulata individuals from this patch and an adjacent monospecific patch. For all present plant species and individuals we estimated the proportion of leaves with different levels of area lost. For the focal species, six leaves were sorted and taken for histological sectioning, in order to allow precise measures of defensive structures. Relative mean leaf area lost differed significantly among the six species found in the multispecific patch. Lavoisiera subulata individuals were more attacked in the multispecific than in the monospecific patch. Leaf margin protection traits in both B. imbricata and L. imbricata showed significant effect against herbivory. Data suggest that some anatomic traits have direct effect against herbivory but their effect are not clearly perceptible among branches within individual plants or among plants within the same species.
Resumo:
ATSR-2 active fire data from 1996 to 2000, TRMM VIRS fire counts from 1998 to 2000 and burn scars derived from SPOT VEGETATION ( the Global Burnt Area 2000 product) were mapped for Peru and Bolivia to analyse the spatial distribution of burning and its intra- and inter-annual variability. The fire season in the region mainly occurs between May and October; though some variation was found between the six broad habitat types analysed: desert, grassland, savanna, dry forest, moist forest and yungas (the forested valleys on the eastern slope of the Andes). Increased levels of burning were generally recorded in ATSR-2 and TRMM VIRS fire data in response to the 1997/1998 El Nino, but in some areas the El Nino effect was masked by the more marked influences of socio-economic change on land use and land cover. There were differences between the three global datasets: ATSR-2 under-recorded fires in ecosystems with low net primary productivities. This was because fires are set during the day in this region and, when fuel loads are low, burn out before the ATSR-2 overpass in the region which is between 02.45 h and 03.30 h. TRMM VIRS was able to detect these fires because its overpasses cover the entire diurnal range on a monthly basis. The GBA2000 product has significant errors of commission (particularly areas of shadow in the well-dissected eastern Andes) and omission (in the agricultural zone around Santa Cruz, Bolivia and in north-west Peru). Particular attention was paid to biomass burning in high-altitude grasslands, where fire is an important pastoral management technique. Fires and burn scars from Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM) data for a range of years between 1987 and 2000 were mapped for areas around Parque Nacional Rio Abiseo (Peru) and Parque Nacional Carrasco (Bolivia). Burn scars mapped in the grasslands of these two areas indicate far more burning had taken place than either the fires or the burn scars derived from global datasets. Mean scar sizes are smaller and have a smaller range in size between years the in the study area in Peru (6.6-7.1 ha) than Bolivia (16.9-162.5 ha). Trends in biomass burning in the two highland areas can be explained in terms of the changing socio-economic environments and impacts of conservation. The mismatch between the spatial scale of biomass burning in the high-altitude grasslands and the sensors used to derive global fire products means that an entire component of the fire regime in the region studied is omitted, despite its importance in the farming systems on the Andes.
Resumo:
Baccharis dichotoma, a new dwarf shrubby species, with small leaves and few heads, of high-altitude grasslands from southeastern Brazil, is described, illustrated, and assigned to subgenus Baccharis.