917 resultados para Hierarchical bayesian space-time models
Resumo:
This study aims to analyse the degree of completeness of world inventory of the mite family Phytoseiidae and the factors that might determine the process of species description. The world data set includes 2,122 valid species described from 1839 to 2010. Species accumulation curves were analysed. The effect of localisation (latitude ranges) and body size on the species description patterns over space and time was assessed. A low proportion of species seems remain to be described, but this trend could be explained by a critical reduction in the number of specialists dedicated to the study of those mites. In addition, this trend refers to the areas where phytoseiids have been well studied around the world, and it may change considerably if the study of these mites would be intensified in some areas. The number of newly described species is lower near the tropics, and their body size is also smaller. Differences in body size were noted between the three sub-families of Phytoseiidae, the highest mean body lengths of adult females being observed for Amblyseiinae, the most diverse family. In the future, collections would have certainly to take into consideration such conclusions for instance in using more adequate optical equipment especially for field collections. The decrease in the number of phytoseiid mite described was confirmed and the factors that could explain such a trend are discussed. Information for improving further inventories is provided and discussed, especially in relation to sampling localization and study methods.
Resumo:
A space-time analysis of American visceral leishmaniasis (AVL) in humans in the city of Bauru, São Paulo State, Brazil was carried out based on 239 cases diagnosed between June 2003 and October 2008. Spatial analysis of the disease showed that cases occurred especially in the city's urban areas. AVL annual incidence rates were calculated, demonstrating that the highest rate occurred in 2006 (19.55/100,000 inhabitants). This finding was confirmed by the time series analysis, which also showed a positive tendency over the period analyzed. The present study allows us to conclude that the disease was clustered in the Southwest side of the city in 2006, suggesting that this area may require special attention with regard to control and prevention measures.
Resumo:
A new approach, the four-window technique, was developed to measure optical phase-space-time-frequency tomography (OPSTFT). The four-window technique is based on balanced heterodyne detection with two local oscillator (LO) fields. This technique can provide independent control of position, momentum, time and frequency resolution. The OPSTFT is a Wigner distribution function of two independent Fourier transform pairs, phase-space and time-frequency. The OPSTFT can be applied for early disease detection.
Resumo:
In the context of expensive numerical experiments, a promising solution for alleviating the computational costs consists of using partially converged simulations instead of exact solutions. The gain in computational time is at the price of precision in the response. This work addresses the issue of fitting a Gaussian process model to partially converged simulation data for further use in prediction. The main challenge consists of the adequate approximation of the error due to partial convergence, which is correlated in both design variables and time directions. Here, we propose fitting a Gaussian process in the joint space of design parameters and computational time. The model is constructed by building a nonstationary covariance kernel that reflects accurately the actual structure of the error. Practical solutions are proposed for solving parameter estimation issues associated with the proposed model. The method is applied to a computational fluid dynamics test case and shows significant improvement in prediction compared to a classical kriging model.
Resumo:
Previous research has shown that motion imagery draws on the same neural circuits that are involved in perception of motion, thus leading to a motion aftereffect (Winawer et al., 2010). Imagined stimuli can induce a similar shift in participants’ psychometric functions as neural adaptation due to a perceived stimulus. However, these studies have been criticized on the grounds that they fail to exclude the possibility that the subjects might have guessed the experimental hypothesis, and behaved accordingly (Morgan et al., 2012). In particular, the authors claim that participants can adopt arbitrary response criteria, which results in similar changes of the central tendency μ of psychometric curves as those shown by Winawer et al. (2010).
Resumo:
The aetiology of childhood cancers remains largely unknown. It has been hypothesized that infections may be involved and that mini-epidemics thereof could result in space-time clustering of incident cases. Most previous studies support spatio-temporal clustering for leukaemia, while results for other diagnostic groups remain mixed. Few studies have corrected for uneven regional population shifts which can lead to spurious detection of clustering. We examined whether there is space-time clustering of childhood cancers in Switzerland identifying cases diagnosed at age <16 years between 1985 and 2010 from the Swiss Childhood Cancer Registry. Knox tests were performed on geocoded residence at birth and diagnosis separately for leukaemia, acute lymphoid leukaemia (ALL), lymphomas, tumours of the central nervous system, neuroblastomas and soft tissue sarcomas. We used Baker's Max statistic to correct for multiple testing and randomly sampled time-, sex- and age-matched controls from the resident population to correct for uneven regional population shifts. We observed space-time clustering of childhood leukaemia at birth (Baker's Max p = 0.045) but not at diagnosis (p = 0.98). Clustering was strongest for a spatial lag of <1 km and a temporal lag of <2 years (Observed/expected close pairs: 124/98; p Knox test = 0.003). A similar clustering pattern was observed for ALL though overall evidence was weaker (Baker's Max p = 0.13). Little evidence of clustering was found for other diagnostic groups (p > 0.2). Our study suggests that childhood leukaemia tends to cluster in space-time due to an etiologic factor present in early life.
Resumo:
With the recognition of the importance of evidence-based medicine, there is an emerging need for methods to systematically synthesize available data. Specifically, methods to provide accurate estimates of test characteristics for diagnostic tests are needed to help physicians make better clinical decisions. To provide more flexible approaches for meta-analysis of diagnostic tests, we developed three Bayesian generalized linear models. Two of these models, a bivariate normal and a binomial model, analyzed pairs of sensitivity and specificity values while incorporating the correlation between these two outcome variables. Noninformative independent uniform priors were used for the variance of sensitivity, specificity and correlation. We also applied an inverse Wishart prior to check the sensitivity of the results. The third model was a multinomial model where the test results were modeled as multinomial random variables. All three models can include specific imaging techniques as covariates in order to compare performance. Vague normal priors were assigned to the coefficients of the covariates. The computations were carried out using the 'Bayesian inference using Gibbs sampling' implementation of Markov chain Monte Carlo techniques. We investigated the properties of the three proposed models through extensive simulation studies. We also applied these models to a previously published meta-analysis dataset on cervical cancer as well as to an unpublished melanoma dataset. In general, our findings show that the point estimates of sensitivity and specificity were consistent among Bayesian and frequentist bivariate normal and binomial models. However, in the simulation studies, the estimates of the correlation coefficient from Bayesian bivariate models are not as good as those obtained from frequentist estimation regardless of which prior distribution was used for the covariance matrix. The Bayesian multinomial model consistently underestimated the sensitivity and specificity regardless of the sample size and correlation coefficient. In conclusion, the Bayesian bivariate binomial model provides the most flexible framework for future applications because of its following strengths: (1) it facilitates direct comparison between different tests; (2) it captures the variability in both sensitivity and specificity simultaneously as well as the intercorrelation between the two; and (3) it can be directly applied to sparse data without ad hoc correction. ^
Resumo:
Complex diseases, such as cancer, are caused by various genetic and environmental factors, and their interactions. Joint analysis of these factors and their interactions would increase the power to detect risk factors but is statistically. Bayesian generalized linear models using student-t prior distributions on coefficients, is a novel method to simultaneously analyze genetic factors, environmental factors, and interactions. I performed simulation studies using three different disease models and demonstrated that the variable selection performance of Bayesian generalized linear models is comparable to that of Bayesian stochastic search variable selection, an improved method for variable selection when compared to standard methods. I further evaluated the variable selection performance of Bayesian generalized linear models using different numbers of candidate covariates and different sample sizes, and provided a guideline for required sample size to achieve a high power of variable selection using Bayesian generalize linear models, considering different scales of number of candidate covariates. ^ Polymorphisms in folate metabolism genes and nutritional factors have been previously associated with lung cancer risk. In this study, I simultaneously analyzed 115 tag SNPs in folate metabolism genes, 14 nutritional factors, and all possible genetic-nutritional interactions from 1239 lung cancer cases and 1692 controls using Bayesian generalized linear models stratified by never, former, and current smoking status. SNPs in MTRR were significantly associated with lung cancer risk across never, former, and current smokers. In never smokers, three SNPs in TYMS and three gene-nutrient interactions, including an interaction between SHMT1 and vitamin B12, an interaction between MTRR and total fat intake, and an interaction between MTR and alcohol use, were also identified as associated with lung cancer risk. These lung cancer risk factors are worthy of further investigation.^
Resumo:
We present a remote sensing observational method for the measurement of the spatio-temporal dynamics of ocean waves. Variational techniques are used to recover a coherent space-time reconstruction of oceanic sea states given stereo video imagery. The stereoscopic reconstruction problem is expressed in a variational optimization framework. There, we design an energy functional whose minimizer is the desired temporal sequence of wave heights. The functional combines photometric observations as well as spatial and temporal regularizers. A nested iterative scheme is devised to numerically solve, via 3-D multigrid methods, the system of partial differential equations resulting from the optimality condition of the energy functional. The output of our method is the coherent, simultaneous estimation of the wave surface height and radiance at multiple snapshots. We demonstrate our algorithm on real data collected off-shore. Statistical and spectral analysis are performed. Comparison with respect to an existing sequential method is analyzed.
Resumo:
According to UN provisions in the period from 2007 to 2050 world population will grow up to 9200 million people. In fact, for the first time in history, in the year 2008 world urban population became higher than rural population. The increase of urban areas and their transport infrastructures has influenced agricultural land use due to their irreversible change, especially when they remain as periurban vacant land, losing their character and identity. In the Europe of the nineties, the traditional urban-rural gradient, characterized by a neat contact between both land types, has become so complex that it has change to a gradient in which it is difficult to separate urban and rural land uses. [Antrop 2004]. A literature review has been made on methodologies used for the urban-rural gradient analysis. One of these methodologies was selected that integrates ecological characterization based on the use of spatial metrics and geographical characterization based on spatial components. Cartographical sources used were Corine Land Cover at 1: 100000 scale and the Spanish Land Use Information System at 1:25000 scale. Urban-rural gradient paradigm is an analysis methodology, coming from landscape ecology, which enables to investigate how urbanization provokes changes in ecological patterns and processes into landscape. [Hahs and McDonnell 2006].The present research adapt this methodology to study the urban-rural gradient in the outskirts of Madrid, Toledo and Guadalajara. Both scales (1:25000 and 1:100000) were simultaneously used to reach the next objectives: 1) Analysis of landscape pattern dynamics in relation to distance to the town centre and major infrastructures. 2) Analysis of landscape pattern dynamics in the fringe of protected areas. The paper presents a new approach to the urban-rural relationship which allows better planning and management of urban áreas.
Resumo:
Remote sensing imaging systems for the measurement of oceanic sea states have recently attracted renovated attention. Imaging technology is economical, non-invasive and enables a better understanding of the space-time dynamics of ocean waves over an area rather than at selected point locations of previous monitoring methods (buoys, wave gauges, etc.). We present recent progress in space-time measurement of ocean waves using stereo vision systems on offshore platforms. Both traditional disparity-based systems and modern elevation-based ones are presented in a variational optimization framework: the main idea is to pose the stereoscopic reconstruction problem of the surface of the ocean in a variational setting and design an energy functional whose minimizer is the desired temporal sequence of wave heights. The functional combines photometric observations as well as spatial and temporal smoothness priors. Disparity methods estimate the disparity between images as an intermediate step toward retrieving the depth of the waves with respect to the cameras, whereas elevation methods estimate the ocean surface displacements directly in 3-D space. Both techniques are used to measure ocean waves from real data collected at offshore platforms in the Black Sea (Crimean Peninsula, Ukraine) and the Northern Adriatic Sea (Venice coast, Italy). Then, the statistical and spectral properties of the resulting observed waves are analyzed. We show the advantages and disadvantages of the presented stereo vision systems and discuss the improvement of their performance in critical issues such as the robustness of the camera calibration in spite of undesired variations of the camera parameters.