853 resultados para Heterogeneous interacting-agent model
Resumo:
Dominance and subordinate behaviors are important ingredients in the social organizations of group living animals. Behavioral observations on the two eusocial species Ropalidia marginata and Ropalidia cyathiformis suggest varying complexities in their social systems. The queen of R. cyathiformis is an aggressive individual who usually holds the top position in the dominance hierarchy although she does not necessarily show the maximum number of acts of dominance, while the R. marginata queen rarely shows aggression and usually does not hold the top position in the dominance hierarchy of her colony. In R. marginata, more workers are involved in dominance-subordinate interactions as compared to R. cyathiformis. These differences are reflected in the distribution of dominance-subordinate interactions among the hierarchically ranked individuals in both the species. The percentage of dominance interactions decreases gradually with hierarchical ranks in R. marginata while in R. cyathiformis it first increases and then decreases. We use an agent-based model to investigate the underlying mechanism that could give rise to the observed patterns for both the species. The model assumes, besides some non-interacting individuals, the interaction probabilities of the agents depend on their pre-differentiated winning abilities. Our simulations show that if the queen takes up a strategy of being involved in a moderate number of dominance interactions, one could get the pattern similar to R. cyathiformis, while taking up the strategy of very low interactions by the queen could lead to the pattern of R. marginata. We infer that both the species follow a common interaction pattern, while the differences in their social organization are due to the slight changes in queen as well as worker strategies. These changes in strategies are expected to accompany the evolution of more complex societies from simpler ones.
Resumo:
We consider a simple renormalizable model providing a UV completion for dark matter whose interactions with the Standard Model are primarily via the gluons. The model consists of scalar dark matter interacting with scalar colored mediator particles. A novel feature is the fact that (in contrast to more typical models containing dark matter whose interactions are mediated via colored scalars) the colored scalars typically decay into multi-quark final states, with no associated missing energy. We construct this class of models and examine associated phenomena related to dark matter annihilation, scattering with nuclei, and production at colliders.
Resumo:
(EuroPES 2009)
Resumo:
A mobile agent system model based on the servlet technology is presented, the constitution and working process of the system are analyzed. The implementation of key parts of this model and the current development situation as well as the development trend of mobile agent technology are introduced. The mobile agent system model enhances its internal structure recognition and facilitates the system expansion and reformation. The remotely mobile agent control method by means of the protocol modification is presented.
Resumo:
Our Agent-based Software Process Modelling (ASPM) approach describes a software process as a set of cooperative agents. Negotiation is the way in which the agents construct their cooperative relations, and thus the software process. Currently, most negotiation models use a fixed negotiation protocol and fixed strategies. In order to achieve the flexibility that the negotiation of the agents in ASPM requires, we propose a negotiation model NM-PA. NM-PA mainly includes a generic negotiation protocol and some rules, which possibly change in different negotiation processes. By changing the rules, the model can support multi-protocols and multi-decision-making strategies at a lower cost.
Resumo:
Belief revision is a well-researched topic within Artificial Intelligence (AI). We argue that the new model of belief revision as discussed here is suitable for general modelling of judicial decision making, along with the extant approach as known from jury research. The new approach to belief revision is of general interest, whenever attitudes to information are to be simulated within a multi-agent environment with agents holding local beliefs yet by interacting with, and influencing, other agents who are deliberating collectively. The principle of 'priority to the incoming information', as known from AI models of belief revision, is problematic when applied to factfinding by a jury. The present approach incorporates a computable model for local belief revision, such that a principle of recoverability is adopted. By this principle, any previously held belief must belong to the current cognitive state if consistent with it. For the purposes of jury simulation such a model calls for refinement. Yet, we claim, it constitutes a valid basis for an open system where other AI functionalities (or outer stimuli) could attempt to handle other aspects of the deliberation which are more specific to legal narratives, to argumentation in court, and then to the debate among the jurors.
Resumo:
This paper presents an investigation into applying Case-Based Reasoning to Multiple Heterogeneous Case Bases using agents. The adaptive CBR process and the architecture of the system are presented. A case study is presented to illustrate and evaluate the approach. The process of creating and maintaining the dynamic data structures is discussed. The similarity metrics employed by the system are used to support the process of optimisation of the collaboration between the agents which is based on the use of a blackboard architecture. The blackboard architecture is shown to support the efficient collaboration between the agents to achieve an efficient overall CBR solution, while using case-based reasoning methods to allow the overall system to adapt and “learn” new collaborative strategies for achieving the aims of the overall CBR problem solving process.
Resumo:
This short position paper considers issues in developing Data Architecture for the Internet of Things (IoT) through the medium of an exemplar project, Domain Expertise Capture in Authoring and Development Environments (DECADE). A brief discussion sets the background for IoT, and the development of the distinction between things and computers. The paper makes a strong argument to avoid reinvention of the wheel, and to reuse approaches to distributed heterogeneous data architectures and the lessons learned from that work, and apply them to this situation. DECADE requires an autonomous recording system, local data storage, semi-autonomous verification model, sign-off mechanism, qualitative and quantitative analysis carried out when and where required through web-service architecture, based on ontology and analytic agents, with a self-maintaining ontology model. To develop this, we describe a web-service architecture, combining a distributed data warehouse, web services for analysis agents, ontology agents and a verification engine, with a centrally verified outcome database maintained by certifying body for qualification/professional status.