951 resultados para Henner, Jean-Jacques, 1829-1905
Resumo:
Biogeochemical and hydrological cycles are currently studied on a small experimental forested watershed (4.5 km(2)) in the semi-humid South India. This paper presents one of the first data referring to the distribution and dynamics of a widespread red soil (Ferralsols and Chromic Luvisols) and black soil (Vertisols and Vertic intergrades) cover, and its possible relationship with the recent development of the erosion process. The soil map was established from the observation of isolated soil profiles and toposequences, and surveys of soil electromagnetic conductivity (EM31, Geonics Ltd), lithology and vegetation. The distribution of the different parts of the soil cover in relation to each other was used to establish the dynamics and chronological order of formation. Results indicate that both topography and lithology (gneiss and amphibolite) have influenced the distribution of the soils. At the downslope, the following parts of the soil covers were distinguished: i) red soil system, ii) black soil system, iii) bleached horizon at the top of the black soil and iv) bleached sandy saprolite at the base of the black soil. The red soil is currently transforming into black soil and the transformation front is moving upslope. In the bottom part of the slope, the chronology appears to be the following: black soil > bleached horizon at the top of the black soil > streambed > bleached horizon below the black soil. It appears that the development of the drainage network is a recent process, which was guided by the presence of thin black soil with a vertic horizon less than 2 in deep. Three distinctive types of erosional landforms have been identified: 1. rotational slips (Type 1); 2. a seepage erosion (Type 2) at the top of the black soil profile; 3. A combination of earthflow and sliding in the non-cohesive saprolite of the gneiss occurs at midslope (Type 3). Types 1 and 2 erosion are mainly occurring downslope and are always located at the intersection between the streambed and the red soil-black soil contact. Neutron probe monitoring, along an area vulnerable to erosion types 1 and 2, indicates that rotational slips are caused by a temporary watertable at the base of the black soil and within the sandy bleached saprolite, which behaves as a plane of weakness. The watertable is induced by the ephemeral watercourse. Erosion type 2 is caused by seepage of a perched watertable, which occurs after swelling and closing of the cracks of the vertic clay horizon and within a light textured and bleached horizon at the top of black soil. Type 3 erosion is not related to the red soil-black soil system but is caused by the seasonal seepage of saturated throughflow in the sandy saprolite of the gneiss occurring at midslope. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We investigate the chemical weathering processes and fluxes in a small experimental watershed (SEW) through a modelling approach. The study site is the Mule Hole SEW developed on a gneissic basement located in the climatic gradient of the Western Ghats, South India. The model couples a lumped hydrological model simulating the water budget at the watershed scale to the WITCH model estimating the dissolution/precipitation rates of minerals using laboratory kinetic laws. Forcing functions and parameters of the simulation are defined by the field data. The coupled model is calibrated with stream and groundwater compositions through the testing of a large range of smectite solubility and abundance in the soil horizons. We found that, despite the low abundance of smectite in the dominant soil type of the watershed (4 vol.%), their net dissolution provides 75% of the export of dissolved silica, while primary silicate mineral dissolution releases only 15% of this flux. Overall, smectites (modelled as montmorillonites) are not stable under the present day climatic conditions. Furthermore, the dissolution of trace carbonates in the saprolitic horizon provides 50% of the calcium export at the watershed scale. Modelling results show the contrasted behavior of the two main soil types of the watershed: red soils (88% of the surface) are provider of calcium, while black soils (smectite-rich and characterized by a lower drainage) consumes calcium through overall carbonate precipitation. Our model results stress the key role played by minor/accessory minerals and by the thermodynamic properties of smectite minerals, and by the drainage of the weathering profiles on the weathering budget of a tropical watershed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The influence of the pedogenic and climatic contexts on the formation and preservation of pedogenic carbonates in a climosequence in the Western Ghats (Karnataka Plateau, South West India) has been studied. Along the climosequence, the current mean annual rainfall (MAR) varies within a 80 km transect from 6000 mm at the edge of the Plateau to 500 mm inland. Pedogenic carbonates occur in the MAR range of 500-1200 mm. In the semi-arid zone (MAR: 500-900 mm), carbonates occur (i) as rhick hardpan calcretes on pediment slopes and (ii) as nodular horizons in polygenic black soils (i.e. vertisols). In the sub-humid zone (MAR: 900-1500 mm), pedogenic carbonates are disseminated in the black soil matrices either as loose, irregular and friable nodules of millimetric size or as indurated botryoidal nodules of centimetric to pluricentimetric size. They also occur at the top layers of the saprolite either as disseminated pluricentimetric indurated nodules or carbonate-cemented lumps of centimetric to decimetric size. Chemical and isotopic (Sr-87/Sr-86) compositions of the carbonate fraction were determined after leaching with 0.25 N HCl. The corresponding residual fractions containing both primary minerals and authigenic clays were digested separately and analyzed. The trend defined by the Sr-87/Sr-86 signatures of both labile carbonate fractions and corresponding residual fractions indicates that a part of the labile carbonate fraction is genetically linked to the local soil composition. Considering the residual fraction of each sample as the most likely lithogenic source of Ca in carbonates, it is estimated that from 24% to 82% (55% on average) of Ca is derived from local bedrock weathering, leading to a consumption of an equivalent proportion of atmospheric CO2. These values indicate that climatic conditions were humid enough to allow silicate weathering: MAR at the time of carbonate formation likely ranged from 400 to 700 mm, which is 2- to 3-fold less than the current MAR at these locations. The Sr, U and Mg contents and the (U-234/U-238) activity ratio in the labile carbonate fraction help to understand the conditions of carbonate formation. The relatively high concentrations of Sr, U and Mg in black soil carbonates may indicate fast growth and accumulation compared to carbonates in saprolite, possibly due to a better confinement of the pore waters which is supported by their high (U-234/U-238) signatures, and/or to higher content of dissolved carbonates in the pore waters. The occurrence of Ce, Mn and Fe oxides in the cracks of carbonate reflects the existence of relatively humid periods after carbonate formation. The carbonate ages determined by the U-Th method range from 1.33 +/- 0.84 kyr to 7.5 +/- 2.7 kyr and to a cluster of five ages around 20 kyr, i.e. the Last Glacial Maximum period. The young occurrences are only located in the black soils, which therefore constitute sensitive environments for trapping and retaining atmospheric CO2 even on short time scales. The maximum age of carbonates depends on their location in the climatic gradient: from about 20 kyr for centimetric nodules at Mule Hole (MAR = 1100 mm/yr) to 200 kyr for the calcrete at Gundlupet (MAR = 700 mm/yr, Durand et al., 2007). The intensity of rainfall during wet periods would indeed control the lifetime of pedogenic carbonates and thus the duration of inorganic carbon storage in soils. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Geophysical methods are becoming more popular nowadays in the field of hydrology due to their time and space efficiency. So an attempt has been made here to relate electrical resistivity with soil moisture content in the field. The experiments were carried out in an experimental watershed `Mulehole' in southern India, which is a forested watershed with approximately 80% red soil. Five auger holes were drilled to perform the soil moisture and electrical resistivity measurements in a toposequence having red and black soils, with sandy weathered soil at the bottom. Soil moisture was measured using neutron probe and electrical resistivity was measured using electrical logging tool. The results indicate that electrical resistivity measurements can be used to measure soil moisture content for red soils only.
Resumo:
Water-rock reactions are driven by the influx of water, which are out of equilibrium with the mineral assemblage in the rock. Here a mass balance approach is adopted to quantify these reactions. Based on field experiments carried out in a granito-gneissic small experimental watershed (SEW), Mule Hole SEW (similar to 4.5 km(2)), quartz, oligoclase, sericite, epidote and chlorite are identified as the basic primary minerals while kaolinite, goethite and smectite are identified as the secondary minerals. Observed groundwater chemistry is used to determine the weathering rates, in terms of `Mass Transfer Coefficients' (MTCs), of both primary and secondary minerals. Weathering rates for primary and secondary minerals are quantified in two steps. In the first step, top red soil is analyzed considering precipitation chemistry as initial phase and water chemistry of seepage flow as final phase. In the second step, minerals present in the saprolite layer are analyzed considering groundwater chemistry as the output phase. Weathering rates thus obtained are converted into weathering fluxes (Q(weathering)) using the recharge quantity. Spatial variability in the mineralogy observed among the thirteen wells of Mule Hole SEW is observed to be reflected in the MTC results and thus in the weathering fluxes. Weathering rates of the minerals in this silicate system varied from few 10 mu mol/L (in case of biotite) to 1000 s of micromoles per liter (calcite). Similarly, fluxes of biotite are observed to be least (7 +/- 5 mol/ha/yr) while those of calcite are highest (1265 791 mol/ha/yr). Further, the fluxes determined annually for all the minerals are observed to be within the bandwidth of the standard deviation of these fluxes. Variations in these annual fluxes are indicating the variations in the precipitation. Hence, the standard deviation indicated the temporal variations in the fluxes, which might be due to the variations in the annual rainfall. Thus, the methodology adopted defines an inverse way of determining weathering fluxes, which mainly contribute to the groundwater concentration. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The Silicate Weathering Rate (SWR) and associated Carbon dioxide Consumption Rate (CCR) in tropical silicate terrain is assessed through a study of the major ion chemistry in a small west flowing river of Peninsular India, the Nethravati River. The specific features of the river basin are high mean annual rainfall and temperature, high runoff and a Precambrian basement composed of granitic-gneiss, charnockite and minor metasediments. The water samples (n = 56) were collected from three locations along the Nethravati River and from two of its tributaries over a period of twelve months. Chemical Weathering Rate (CWR) for the entire watershed is calculated by applying rainwater correction using river chloride as a tracer. Chemical Weathering Rate in the Nethravati watershed is estimated to 44 t.km(-2).y(-1) encompassing a SWR of 42 t.km(-2).y(-1) and a maximum carbonate contribution of 2 t.km(-2).y(-1). This SWR is among the highest reported for granito-gneissic terrains. The assessed CCR is 2.9 . 10(5) mol.km(-2).y(-1). The weathering index (Re). calculated from molecular ratios of dissolved cations and silica in the river, suggests an intense silicate weathering leading to kaolinite-gibbsite precipitation in the weathering covers. The intense SWR and CCR could be due to the combination of high runoff and temperature along with the thickness and nature of the weathering cover. The comparison of silicate weathering fluxes with other watersheds reveals that under similar morpho-climatic settings basalt weathering would be 2.5 times higher than the granite-gneissic rocks. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Hydrogeological and climatic effect on chemical behavior of groundwater along a climatic gradient is studied along a river basin. `Semi-arid' (500-800 mm of mean annual rainfall), `sub-humid' (800-1,200 mm/year) and `humid' (1,200-1,500 mm/year) are the climatic zones chosen along the granito-gneissic plains of Kabini basin in South India for the present analysis. Data on groundwater chemistry is initially checked for its quality using NICB ratio (<+/- 5 %), EC versus TZ+ (similar to 0.85 correlation), EC versus TDS and EC versus TH analysis. Groundwater in the three climatic zones is `hard' to `very hard' in terms of Ca-Mg hardness. Polluted wells are identified (> 40 % of pollution) and eliminated for the characterization. Piper's diagram with mean concentrations indicates the evolution of CaNaHCO3 (semi-arid) from CaHCO3 (humid zone) along the climatic gradient. Carbonates dominate other anions and strong acids exceeded weak acids in the region. Mule Hole SEW, an experimental watershed in sub-humid zone, is characterized initially using hydrogeochemistry and is observed to be a replica of entire sub-humid zone (with 25 wells). Extension of the studies for the entire basin (120 wells) showed a chemical gradient along the climatic gradient with sub-humid zone bridging semi-arid and humid zones. Ca/Na molar ratio varies by more than 100 times from semi-arid to humid zones. Semi-arid zone is more silicaceous than sub-humid while humid zone is more carbonaceous (Ca/Cl similar to 14). Along the climatic gradient, groundwater is undersaturated (humid), saturated (sub-humid) and slightly supersaturated (semi-arid) with calcite and dolomite. Concentration-depth profiles are in support of the geological stratification i.e., not approximate to 18 m of saprolite and similar to 25 m of fracture rock with parent gneiss beneath. All the wells are classified into four groups based on groundwater fluctuations and further into `deep' and `shallow' based on the depth to groundwater. Higher the fluctuations, larger is its impact on groundwater chemistry. Actual seasonal patterns are identified using `recharge-discharge' concept based on rainfall intensity instead of traditional monsoon-non-monsoon concept. Non-pumped wells have low Na/Cl and Ca/Cl ratios in recharge period than in discharge period (Dilution). Few other wells, which are subjected to pumping, still exhibit dilution chemistry though water level fluctuations are high due to annual recharge. Other wells which do not receive sufficient rainfall and are constantly pumped showed high concentrations in recharge period rather than in discharge period (Anti-dilution). In summary, recharge-discharge concept demarcates the pumped wells from natural deep wells thus, characterizing the basin.
Resumo:
The current understanding of wildfire effects on water chemistry is limited by the quantification of the elemental dissolution rates from ash and element release rate from the plant litter, as well as quantification of the specific ash contribution to stream water chemistry. The main objective of the study was to provide such knowledge through combination of experimental modelling, field data and end-member mixing analysis (EMMA) of wildfire impact on a watershed scale. The study concerns watershed effects of fire in the Indian subcontinent, a region that is typically not well represented in the fire science literature. In plant litter ash, major elements are either hosted in readily-soluble phases (K, Mg) such as salts, carbonates and oxides or in less-soluble carrier-phases (Si, Ca) such as amorphous silica, quartz and calcite. Accordingly, elemental release rates, inferred from ash leaching experiments in batch reactor, indicated that the element release into solution followed the order K > Mg > Na > Si > Ca. Experiments on plant litter leaching in mixed-flow reactor indicated two dissolution regimes: rapid, over the week and slower over the month. The mean dissolution rates at steady-state (R-ss) indicated that the release of major elements from plant litter followed the order Ca > Si > Cl > Mg > K > Na. R-ss for Si and Ca for tree leaves and herbaceous species are similar to those reported for boreal and European tree species and are higher than that from the dissolution of soil clay minerals. This identifies tropical plant litters as important source of Si and Ca for tropical surface waters. In the wildfire-impacted year 2004, the EMMA indicated that the streamflow composition (Ca, K, Mg, Na, Si, Cl) was controlled by four main sources: rainwater, throughfall, ash leaching and soil solution. The influence of the ash end-member was maximal early in the rainy season (the two first storm events) and decreased later in the rainy season, when the stream was dominated by the throughfall end-member. The contribution of plant litter decay to the streamwater composition for a year not impacted by wildfire is significant with estimated solute fluxes originating from this decay greatly exceed, for most major elements, the annual elemental dissolved fluxes at the Mule Hole watershed outlet. This highlighted the importance of solute retention and vegetation back uptake processes within the soil profile. Overall, the fire increased the mobility and export of major elements from the soils to the stream. It also shifted the vegetation-related contribution to the elemental fluxes at the watershed outlet from long-term (seasonal) to short-term (daily to monthly). (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Systematic monitoring of subsurface hydrogeochemistry has been carried out for a period of one year in a humid tropical region along the Nethravati-Gurupur River. The major ion and stable isotope (delta O-18 and delta H-2) compositions are used to understand the hydrogeochemistry of groundwater and its interaction with surface water. In the study, it is observed that intense weathering of source rocks is the major source of chemical elements to the surface and subsurface waters. In addition, agricultural activities and atmospheric contributions also control the major ion chemistry of water in the study area. There is a clear seasonality in the groundwater chemistry, which is related to the recharge and discharge of the hydrological system. On a temporal scale, there is a decrease in major cation concentrations during the monsoon which is a result of dilution of sources from the weathering of rock minerals, and an increase in anion concentrations which is contributed by the atmosphere, accompanied by an increase in water level during the monsoon. The stable isotope composition indicates that groundwater in the basin is of meteoric origin and recharged directly from the local precipitation during the monsoonal season. Soon after the monsoon, groundwater and surface water mix in the subsurface region. The groundwater feeds the surface water during the lean river flow season.
Resumo:
River water composition (major ion and Sr-87/Sr-86 ratio) was monitored on a monthly basis over a period of three years from a mountainous river (Nethravati River) of southwestern India. The total dissolved solid (TDS) concentration is relatively low (46 mg L-1) with silica being the dominant contributor. The basin is characterised by lower dissolved Sr concentration (avg. 150 nmol L-1), with radiogenic Sr-87/Sr-86 isotopic ratios (avg. 0.72041 at outlet). The composition of Sr and Sr-87/Sr-86 and their correlation with silicate derived cations in the river basin reveal that their dominant source is from the radiogenic silicate rock minerals. Their composition in the stream is controlled by a combination of physical and chemical weathering occurring in the basin. The molar ratio of SiO2/Ca and Sr-87/Sr-86 isotopic ratio show strong seasonal variation in the river water, i.e., low SiO2/Ca ratio with radiogenic isotopes during non-monsoon and higher SiO2/Ca with less radiogenic isotopes during monsoon season. Whereas, the seasonal variation of Rb/Sr ratio in the stream water is not significant suggesting that change in the mineral phase being involved in the weathering reaction could be unlikely for the observed molar SiO2/Ca and Sr-87/Sr-86 isotope variation in river water. Therefore, the shift in the stream water chemical composition could be attributed to contribution of ground water which is in contact with the bedrock (weathering front) during non-monsoon and weathering of secondary soil minerals in the regolith layer during monsoon. The secondary soil mineral weathering leads to limited silicate cation and enhanced silica fluxes in the Nethravati river basin. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND: Interleukin-10 (IL-10) is currently being extensively studied in clinical trials for the treatment of Crohn's disease (CD). Only marginal effects have, however, been reported, and the dose-response curve was bell-shaped contrasting with the reported data from in vitro experiments. AIM: To use another in vitro model to analyze the effect of rhIL-10 and rhIL-4 on the spontaneous mucosal TNF-alpha secretion in patients with CD, and to characterize the phenotype of the cells targeted by rhIL-10. METHODS: Non-inflamed colon biopsies from CD patients were cultured for 16 hours in presence of different concentrations of rhIL-10 or rhIL-4. The numbers of TNF-alpha-secreting cells among isolated lamina propria mononuclear cells (LPMNC) were estimated by Elispot. RESULTS: Both rhIL-10 and rhIL-4 down-regulate TNF-alpha secretion by LPMNC from CD patients, with a more pronounced effect with rhIL-10. These effects were closely linked to the cytokine concentrations used, with a bell-shaped dose-response curve. Residual TNF-alpha secretion, in the presence of optimal rhIL-10 concentration was mainly attributable to CD3+ T cells. In contrast, at higher rhIL-10 concentrations, CD3- cells contributed significantly to the TNF-alpha secretion. CONCLUSIONS: The in vitro model we used, demonstrates that IL-4, but mostly IL-10, efficiently suppresses TNF-alpha secretion in LPMNC from CD patients, with a dose-response curve similar to results obtained in vivo. Resistance at high rhIL-10 concentrations was associated with a change in the phenotype of TNF-alpha-secreting cells.
Resumo:
BACKGROUND/AIMS: The intestinal immune system faces large amounts of antigens, and its regulation is tightly balanced by cytokines. In this study, the effect of intestinal flow diversion on spontaneous secretion of interleukin (IL)-4 and interferon (IFN)- gamma was analysed. METHODS: Eight patients (two with Crohn's disease, four with ulcerative colitis, and two with previous colon cancer) carrying a double lumen small bowel stoma after a total colectomy procedure were included in the study. For each patient, eight biopsy samples were taken endoscopically from both the diverted and non-diverted part of the small bowel. Intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs) were isolated separately and assayed for numbers of cells spontaneously secreting IL-4 and/or IFN-gamma by an ELISPOT technique. RESULTS: Compared with the non-diverted mucosa, a significant decrease in the number of spontaneously IFN-gamma secreting CD3 lymphocytes was observed in the diverted small bowel mucosa among both IELs (p = 0.008) and LPLs (p = 0.007). The same results, although less significant, were obtained for IL-4, especially in LPLs (p = 0.01). CONCLUSION: The intestinal content influences the spontaneous secretion of IFN-gamma and IL-4 by intestinal lymphocytes. These results could help to elucidate the anti-inflammatory role of split ileostomy in patients suffering from inflammatory bowel diseases.
Resumo:
info:eu-repo/semantics/published
Resumo:
The skeleton is the first and most common site of distant relapse in breast and prostate carcinomas. Tumor bone disease is responsible for a considerable morbidity, which also makes major demands on resources for healthcare provision. Increased bone resorption in tumor bone disease appears to be essentially mediated by the ostoclasts, explaining why bisphosphonates have been successfully used for the treatment of malignant ostolysis. Hypercalcemia occurs in 10-20% of the patients with advanced cancer, and the uncoupling between bone resorption and bone formation is easily demonstrated by the measurement of bone markers. The differential diagnosis between tumor-induced hypercalcemia and primary hyperparathyroidism is most often easy when using intact parathyroid hormone (PTH) assays; moreover, parathyroid hormone-related protein (PTHrP) determination can be useful in selected cases. The diagnosis of bone metastases is often easy when the patient is symptomatic. The diagnostic usefulness of bone markers is limited, and the available data indicate that bone markers are so far unsuitable for an early diagnosis of neoplastic skeletal involvement on an individual basis. However, by combining bone-specific alkaline phosphatase (BALP) or modern bone resorption markers with specific tumor markers, such as PSA or CA15.3, the diagnostic sensitivity of bone markers can be improved. Their degree of elevation correlates with the tumor burden and has been shown to be an independent prognostic factor for several tumors. On the other hand, biochemical markers of bone turnover have the unique potential to simplify and improve the monitoring of metastatic bone disease, which remains a continuous challenge for the oncologist. Peptide-bound cross-links could be quite useful to discriminate between patients progressing early on treatment from those with longer disease control. Also, the diagnostic efficiency of a 50% increase in these markers could identify imminent progression. © 2006 Elsevier Inc. All rights reserved.