963 resultados para Height.
Resumo:
Recent empirical studies have shown that multi-angle spectral data can be useful for predicting canopy height, but the physical reason for this correlation was not understood. We follow the concept of canopy spectral invariants, specifically escape probability, to gain insight into the observed correlation. Airborne Multi-Angle Imaging Spectrometer (AirMISR) and airborne Laser Vegetation Imaging Sensor (LVIS) data acquired during a NASA Terrestrial Ecology Program aircraft campaign underlie our analysis. Two multivariate linear regression models were developed to estimate LVIS height measures from 28 AirMISR multi-angle spectral reflectances and from the spectrally invariant escape probability at 7 AirMISR view angles. Both models achieved nearly the same accuracy, suggesting that canopy spectral invariant theory can explain the observed correlation. We hypothesize that the escape probability is sensitive to the aspect ratio (crown diameter to crown height). The multi-angle spectral data alone therefore may not provide enough information to retrieve canopy height globally.
Resumo:
Cosmic rays modify current flow in the global atmospheric electrical circuit. Charging at horizontal layer cloud edges has been observed to be consistent with global circuit vertical current flow through the cloud, which can modify the properties of small and pure water droplets. Studies have been hampered by the absence of cloud edge observations, hence cloud base height information is investigated here. Cloud base height measured at the Lerwick Observatory, Shetland, UK, is analysed using threshold tests and spectral analysis. The cloud base height distributions for low cloud (cloud base less than 800 m) are found to vary with cosmic ray conditions. Further, 27 day and 1.68 year periodicities characteristic of cosmic ray variations are present, weakly, in the cloud base height data of stratiform clouds, when such periodicities are present in neutron monitor cosmic ray data. These features support the idea of propagation of heliospheric variability into layer clouds, through the global atmospheric electric circuit.
Resumo:
Near isogenic lines varying for alleles for reduced height (Rht) and photoperiod insensitivity (Ppd-D1) in cv. Mercia (2005/6 to 2010/11; rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c+Ppd-D1a, Rht-D1c, Rht12) and cvs Maris Huntsman and Maris Widgeon (2007/8 to 2010/11; rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht-B1b+Rht-D1b, Rht-D1b+Rht-B1c) were compared at one field site, but within different systems (‘organic’, O, 2005/6 to 2007/8 v ‘intensive’, I, 2005/6 to 2010/11). Further experiments at the site (2006/7 to 2008/9) compared 64 lines of a doubled haploid (DH) population [Savannah (Rht-D1b) × Renesansa (Rht-8c+Ppd-D1a)]. Gibberellin (GA) insensitive dwarfing alleles (Rht-B1b; Rht-B1c; Rht-D1b; Rht-D1c) could reduce α-amylase activity and/or increase Hagberg falling number (HFN) but effects depended greatly on system, background and season. Only Rht-B1c increased grain dormancy despite producing plants taller than Rht-D1c. The GA-sensitive Rht8c+Ppd-D1a in Mercia was associated with reduced HFN but analysis of the DH population suggested this was more closely linked with Ppd-D1a, rather than Rht8c. The severe GA-sensitive dwarfing allele Rht12 was associated with reduced HFN. Instability in HFN over season tended to increase with degree of dwarfing. There was a negative association between mean grain weight and HFN that was in addition to effects of Rht and Ppd-D1 allele.
Resumo:
A perceived limitation of z-coordinate models associated with spurious diapycnal mixing in eddying, frontal flow, can be readily addressed through appropriate attention to the tracer advection schemes employed. It is demonstrated that tracer advection schemes developed by Prather and collaborators for application in the stratosphere, greatly improve the fidelity of eddying flows, reducing levels of spurious diapycnal mixing to below those directly measured in field experiments, ∼1 × 10−5 m2 s−1. This approach yields a model in which geostrophic eddies are quasi-adiabatic in the ocean interior, so that the residual-mean overturning circulation aligns almost perfectly with density contours. A reentrant channel configuration of the MIT General Circulation Model, that approximates the Antarctic Circumpolar Current, is used to examine these issues. Virtual analogs of ocean deliberate tracer release field experiments reinforce our conclusion, producing passive tracer solutions that parallel field experiments remarkably well.
Resumo:
From Milsom's equations, which describe the geometry of ray-path hops reflected from the ionospheric F-layer, algorithms for the simplified estimation of mirror-reflection height are developed. These allow for hop length and the effects of variations in underlying ionisation (via the ratio of the F2- and E-layer critical frequencies) and F2-layer peak height (via the M(3000)F2-factor). Separate algorithms are presented which are applicable to a range of signal frequencies about the FOT and to propagation at the MUF. The accuracies and complexities of the algorithms are compared with those inherent in the use of a procedure based on an equation developed by Shimazaki.
Resumo:
A Canopy Height Profile (CHP) procedure presented in Harding et al. (2001) for large footprint LiDAR data was tested in a closed canopy environment as a way of extracting vertical foliage profiles from LiDAR raw-waveform. In this study, an adaptation of this method to small-footprint data has been shown, tested and validated in an Australian sparse canopy forest at plot- and site-level. Further, the methodology itself has been enhanced by implementing a dataset-adjusted reflectance ratio calculation according to Armston et al. (2013) in the processing chain, and tested against a fixed ratio of 0.5 estimated for the laser wavelength of 1550nm. As a by-product of the methodology, effective leaf area index (LAIe) estimates were derived and compared to hemispherical photography-derived values. To assess the influence of LiDAR aggregation area size on the estimates in a sparse canopy environment, LiDAR CHPs and LAIes were generated by aggregating waveforms to plot- and site-level footprints (plot/site-aggregated) as well as in 5m grids (grid-processed). LiDAR profiles were then compared to leaf biomass field profiles generated based on field tree measurements. The correlation between field and LiDAR profiles was very high, with a mean R2 of 0.75 at plot-level and 0.86 at site-level for 55 plots and the corresponding 11 sites. Gridding had almost no impact on the correlation between LiDAR and field profiles (only marginally improvement), nor did the dataset-adjusted reflectance ratio. However, gridding and the dataset-adjusted reflectance ratio were found to improve the correlation between raw-waveform LiDAR and hemispherical photography LAIe estimates, yielding the highest correlations of 0.61 at plot-level and of 0.83 at site-level. This proved the validity of the approach and superiority of dataset-adjusted reflectance ratio of Armston et al. (2013) over a fixed ratio of 0.5 for LAIe estimation, as well as showed the adequacy of small-footprint LiDAR data for LAIe estimation in discontinuous canopy forests.
Resumo:
Large waves pose risks to ships, offshore structures, coastal infrastructure and ecosystems. This paper analyses 10 years of in-situ measurements of significant wave height (Hs) and maximum wave height (Hmax) from the ocean weather ship Polarfront in the Norwegian Sea. During the period 2000 to 2009, surface elevation was recorded every 0.59 s during sampling periods of 30 min. The Hmax observations scale linearly with Hs on average. A widely-used empirical Weibull distribution is found to estimate average values of Hmax/Hs and Hmax better than a Rayleigh distribution, but tends to underestimate both for all but the smallest waves. In this paper we propose a modified Rayleigh distribution which compensates for the heterogeneity of the observed dataset: the distribution is fitted to the whole dataset and improves the estimate of the largest waves. Over the 10-year period, the Weibull distribution approximates the observed Hs and Hmax well, and an exponential function can be used to predict the probability distribution function of the ratio Hmax/Hs. However, the Weibull distribution tends to underestimate the occurrence of extremely large values of Hs and Hmax. The persistence of Hs and Hmax in winter is also examined. Wave fields with Hs>12 m and Hmax>16 m do not last longer than 3 h. Low-to-moderate wave heights that persist for more than 12 h dominate the relationship of the wave field with the winter NAO index over 2000–2009. In contrast, the inter-annual variability of wave fields with Hs>5.5 m or Hmax>8.5 m and wave fields persisting over ~2.5 days is not associated with the winter NAO index.
Resumo:
Mixing layer height (MLH) is one of the key parameters in describing lower tropospheric dynamics and capturing its diurnal variability is crucial, especially for interpreting surface observations. In this paper we introduce a method for identifying MLH below the minimum range of a scanning Doppler lidar when operated at vertical. The method we propose is based on velocity variance in low-elevation-angle conical scanning and is applied to measurements in two very different coastal environments: Limassol, Cyprus, during summer and Loviisa, Finland, during winter. At both locations, the new method agrees well with MLH derived from turbulent kinetic energy dissipation rate profiles obtained from vertically pointing measurements. The low-level scanning routine frequently indicated non-zero MLH less than 100 m above the surface. Such low MLHs were more common in wintertime Loviisa on the Baltic Sea coast than during summertime in Mediterranean Limassol.
Resumo:
We analyze by numerical simulations and mean-field approximations an asymmetric version of the stochastic sandpile model with height restriction in one dimension. Each site can have at most two particles. Single particles are inactive and do not move. Two particles occupying the same site are active and may hop to neighboring sites following an asymmetric rule. Jumps to the right or to the left occur with distinct probabilities. In the active state, there will be a net current of particles to the right or to the left. We have found that the critical behavior related to the transition from the active to the absorbing state is distinct from the symmetrical case, making the asymmetry a relevant field.
Resumo:
Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated ∼2,000, ∼3,700 and ∼9,500 SNPs explained ∼21%, ∼24% and ∼29% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/β-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants.2014
Resumo:
A melancia é uma espécie tradicionalmente conduzida em campo no sistema rasteiro. As cultivares de frutos pequenos (1 a 3 kg), que adquirem melhores preços de mercado, vêm sendo cultivadas também em ambiente protegido, onde são conduzidas no sistema vertical, com poda de ramos e raleio de frutos. Essas práticas possibilitam aumentar o adensamento das plantas, a qualidade e a produtividade de frutos em comparação ao sistema rasteiro. Objetivou-se com este trabalho avaliar a influência de três alturas de condução (1,7; 2,2 e 2,7 m) e duas densidades de plantas (3,17 e 4,76 plantas m-2) sobre as características produtivas e qualitativas da mini melancia Smile cultivada em ambiente protegido. A poda da haste principal foi realizada aos 43, 55 e 66 dias após o transplante (DAT) para as alturas de condução de 1,7; 2,2 e 2,7 m, respectivamente. A massa seca dos ramos, dos pecíolos, das folhas e total foram afetados pela altura de condução, cujos maiores valores foram obtidos para as plantas conduzidas a 2,2 e 2,7 m de altura. A área foliar, a área foliar específica e o índice de área foliar não foram influenciados pela altura de condução das plantas. A altura de condução de 2,7 m elevou a produtividade total. Entretanto, a produtividade comercial, a massa média dos frutos e todas as características qualitativas não foram significativamente diferentes das obtidos pela altura de poda de 2,2 m. em relação à densidade de plantas, a melhor opção foi a de 4,76 plantas m-2, pois elevou a produtividade comercial em 37,4% sem reduzir a massa média dos frutos.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)