993 resultados para Heated cavity
Resumo:
OBJECTIVE: to evaluate the efficacy of the amniotic membrane used with polypropylene mesh against the formation of adhesions and its influence on healing. METHODS: twenty five female Wistar rats were anesthetized for creating a parietal defect in the anterior abdominal wall. Its correction was made with polypropylene mesh alone and associated with amniotic membrane. In the control group (n=11), the screen was inserted alone. In group A (n=7) we interposed the amniotic membrane between the screen and the abdominal wall. In group B, the amniotic membrane was placed on the mesh, covering it. After seven days, the animals were euthanized for macroscopic and microscopic evaluation of healing. RESULTS: adhesions were observed in all animals except one in the control group. Severe inflammation was observed in all animals in groups A and B and in three of the control group, with significant difference between them (A and B with p=0.01). Pronounced angiogenic activity was noted in one animal in the control group, six in group A and four in group B, with a significant difference between the control group and group A (p=0.002) and group B (p=0.05). The scar collagen was predominantly mature, except in five animals of the control group, with significant difference between the control group and group A (p=0.05) and group B (p=0.05). CONCLUSION: The amniotic membrane did not alter the formation of adhesions in the first postoperative week. There were also pronounced inflammation, high angiogenic activity and predominance of mature collagen fibers, regardless of the anatomical plane that it was inserted in.
Resumo:
Most descriptions of the ostrich oropharynx and oesophagus are superficial and supply little meaningful morphological data. The aim of this investigation is describe the ostrich oropharingeal cavity, in order to supply the deficiency of macroscopic data about this important animal. Five heads of 12 to 14-month-old ostriches of either sex were anatomically dissected to expose the oropharynx. The ostrich oropharynx was "bell-shaped" composed by the maxillary and mandibular ramphoteca. The roof and floor presented two distinct regions different in colour of the mucosa. The rostral region was pale pink contrasting to creamy-pink coloured caudal region. The median longitudinal ridge extended rostrally from the apex of the choana to the tip of the beak in the roof and it is clearly more prominent and rigid than the homolog in the floor that appeared thin and stretched rostrally, continuing caudally surrounding the tongue and the laryngeal mound eventually merging with the oesophageal mucosa. The floor was formed by the interramal region, tongue and laryngeal mound containing shield-shaped glottis. It can be concluded that the present study, in addition to confirming the basic features of the oropharynx previously described for the ostrich, clarified the contradictory information presented in the literature and also provided new, unreported morphological data, some of which may be important when studying nutrition and health in these birds.
Resumo:
The capuchin monkey is widespread both north and south of the Legal Amazon and in the Brazilian cerrado. Ten clinically healthy capuchin monkeys were submitted to an anatomical and radiographic study of their thoracic cavities. The radiographic evaluation allowed the description of biometric values associated with the cardiac silhouette and thoracic structures. Application of the VHS (vertebral heart size) method showed positive correlation (P<0.05) with depth of the thoracic cavity, as well as between the body length of vertebrae T3, T4, T5 and T6 and the cardiac length and width. The lung fields showed a diffuse interstitial pattern, more visible in the caudal lung lobes and a bronchial pattern in the middle and cranial lung lobes. The radiographic examination allowed preliminary inferences to be made concerning the syntopy of the thoracic structures and modification of the pulmonary patterns and cardiac anatomy for the capuchin monkey.
Resumo:
The rhea (Rhea americana americana) is an american bird belonging to Ratite's family. Studies related to its morphology are still scarce. This study aims to describe the macroscopic structures of the oropharyngeal cavity. Five heads (2 to 6 months old) formalin preserved were anatomically dissected to expose the oropharynx. The oropharynx of the rhea was "bell-shaped" composed by the maxillary and mandibular rhamphotheca. The roof and floor presented two distinct regions different in colour of the mucosa. The rostral region was pale pink contrasting to grey coloured caudal region. The median longitudinal ridge extended rostrally from the apex of the choana to the tip of the beak in the roof and it is clearly more prominent and rigid than the homolog in the floor that appeared thin and stretched merely along the rostral portion of the regio interramalis. The floor was formed by the interramal region, (regio interramalis) tongue and laryngeal mound containing glove-shaped glottis. This study confirmed the basic morphology of the oropharinx of the rhea. However, important morphological information not previously described is highlighted and contradictory information present in the literature is clarified.
Resumo:
In nuclear reactors, the occurrence of critical heat flux leads to fuel rod overheating with clad fusion and radioactive products leakage. To predict the effects of such phenomenon, experiments are performed using electrically heated rods to simulate operational and accidental conditions of nuclear fuel rods. In the present work, it is performed a theoretical analysis of the drying and rewetting front propagation during a critical heat flux experiment, starting with the application of an electrical power step from steady state condition. After the occurrence of critical heat flux, the drying front propagation is predicted. After a few seconds, a power cut is considered and the rewetting front behavior is analytically observed. Studies performed with various values of coolant mass flow rate show that this variable has more influence on the drying front velocity than on the rewetting one.
Resumo:
The aim of this thesis was to research how slurry’s viscosity and rheology affect to pumping in peristaltic hose pump and in eccentric progressive cavity pump. In addition, it was researched the formed pressure pulsation in hose pump. Pressure pulsation was studied by pumping different slurries and by using different pipe materials. Pressure and power curves were determined for both used pumps. It was also determined NPSHR curve for the progressive cavity pump. Literature part of the thesis considered to distribute fluids to different rheology types, as well as theories and models to identify different rheology types. Special attention was paid to non-Newtonian fluids, which were also used in experimental part of this thesis. In addition, the literature part discusses about pumps, parameters for pump sizing, and pressure pulsation in hose pump. Starch, bentonite, and carboxymethyl cellulose slurries were used in the experimental part of this thesis. The slurries were pumped with Flowrox peristaltic hose pump (LPP-T32) and eccentric progressive cavity pump (C10/10). From the each slurry was taken a sample, and the samples were analyzed for concentration, viscosity and rheology type. The used pipe materials in pressure pulsation experiments were steel and elastic, and it was also used a prototype of pulsation dampener. The pulsation experiments indicated that the elastic pipe and the prototype of pulsation dampener attenuated pressure pulsation better than the steel pipe at low pressure levels. The differences between different materials disappeared when pressure level and pump rotation speed increased. In slurry experiments, pulsation was different depending on rheology and viscosity of the slurry. According to experiments, the rheology did not significantly affect to pump power consumption or efficiency.
Resumo:
We placed spheres of synthetic hydroxyapatite (calcium chloride combined with sodium phosphate) in the eviscerated or enucleated orbital cavity of rats in order to evaluate the biocompatibility of this material with the orbital cavity. The study was conducted on 50 albino rats, 25 of which were submitted to enucleation and 25 to evisceration of one eye. The animals were sacrificed 7, 15, 21, 30 and 60 days after surgery and the orbital content was submitted to histopathological examination. A reaction of the young granulation tissue type was observed first. The hydroxyapatite was gradually surrounded by a granulomatous macrophage inflammatory response and covered with dense connective tissue that formed a sort of" mesh" septating and supporting progressively smaller blocks of the substance. The same type of reaction was observed in the enucleated and eviscerated cavities. We conclude that synthetic hydroxyapatite is an inert nonallergenic material which is appropriate for volume replacement in the anophthalmic cavity
Resumo:
The effects of microwave heating on the oxidative stability of refined canola, corn and soybean oils were determined by absorptivity in the UV spectrum and by chemical analysis (peroxide and acid values). Samples were heated in a microwave oven (800 W, 2,450 MHz) for 0 to 36 min. Microwave heating produced oxidative degradation in the three oils. Absorptivity at 232 and 270 nm increased gradually with an increase in microwave exposure time (0-36 min) for canola, corn and soybean oils. Values of absorptivity at 232 nm increased from 4.812, 3.568 and 4.183 to 10.579, 12.874 and 15.950 after 36 min of heating canola, corn and soybean oil, respectively. The absorptivity at 232nm, due to the formation of conjugated dienes, was a good index for measuring the degradation of microwaved samples. UV scanning (220 - 320 nm) detected alterations in the spectrum of microwaved samples. Acid value also increased within 36 min of heating for all oils. Peroxide value showed a significant difference (P<0.05) in the initial stage of heating (0-6 min) for all oils. After this period it could not be correlated with absorptivity at 232 nm, due to the instability of hydroperoxides at high temperatures.
Resumo:
Changes in the profile of volatile compounds after the heating of refined soybean oil without adding antioxidants, and treated with quercetin and chlorogenic acid (5-CQA) were investigated by GC/FID, GC/MS, and GC/SNIFFING. The heating temperature of the oil sample was 20 °C for the first minute, and then it was increased up to 160 °C at the rate of 10 °C min-1. The final temperature was kept for 10 minutes. 19 volatiles were identified in the heated samples without antioxidants. Medium-chain carbonyls predominated in the volatile fraction, mainly 2-heptenal, 2,4-heptadienal and 2,4-decadienal. Around 11 to 15 volatile compounds were detected in the heated samples treated with 5-CQA and quercetin, respectively. 5-CQA was not very efficient in delaying the formation of oxidative volatile compounds. The samples quercetin presented lower proportion of carbonyls with C6-C9.. The GC peak area data were used as an approach to estimate the relative content of each volatile compound and indicate that the samples treated with quercetin (p < 0.05) had significantly lower values for, 1-pentanol, 2,4-heptadienal, and 2,4-decadienal compared with those without antioxidants and treated with 5-CQA. GC/SNIFFING analysis revealed a smaller odor perception in the samples treated with 5-CQA compared to those without antioxidants. No odor was perceived in the heated samples treated with quercetin. These results indicate greater effectiveness of quercetin in delaying the formation of oxidative volatile compounds in soybean oils subjected to mild heating conditions. Apparently, biopolyphenols used in the present work showed good oxidative stability since no new volatile compound was detected in the heated samples treated with them.
Resumo:
In this work, through the use of thermal analysis techniques, the thermal stabilities of some antioxidants were investigated, in order to evaluate their resistance to thermal oxidation in oils, by heating canola vegetable oil, and to suggest that antioxidants would be more appropriate to increase the resistance of vegetable oils in the thermal degradation process in frying. The techniques used were: Thermal Gravimetric (TG) and Differential Scanning Calorimetry (DSC) analyses, as well as an allusion to a possible protective action of the vegetable oils, based on the thermal oxidation of canola vegetable oil in the laboratory under constant heating at 180 ºC/8 hours for 10 days. The studied antioxidants were: ascorbic acid, sorbic acid, citric acid, sodium erythorbate, BHT (3,5-di-tert-butyl-4-hydroxytoluene), BHA (2, 3-tert-butyl-4-methoxyphenol), TBHQ (tertiary butyl hydroquinone), PG (propyl gallate) - described as antioxidants by ANVISA and the FDA; and also the phytic acid antioxidant and the SAIB (sucrose acetate isobutyrate) additive, which is used in the food industry, in order to test its behavior as an antioxidant in vegetable oil. The following antioxidants: citric acid, sodium erythorbate, BHA, BHT, TBHQ and sorbic acid decompose at temperatures below 180 ºC, and therefore, have little protective action in vegetable oils undergoing frying processes. The antioxidants below: phytic acid, ascorbic acid and PG, are the most resistant and begin their decomposition processes at temperatures between 180 and 200 ºC. The thermal analytical techniques have also shown that the SAIB antioxidant is the most resistant to oxidative action, and it can be a useful choice in the thermal decomposition prevention of edible oils, improving stability regarding oxidative processes.
Resumo:
In this paper, the generation of a multiwavelength laser source from a Brillouin -Erbium fiber laser in the long wavelength band (L-band) region is experimentally demonstrated. The proposed laser system utilizes a Fabrv-Perot cavity formed by fiber-loop mirrors. Twenty-four lines of Brillouin-Stokes with line spacings of 10 GHz are obtained in the L-band region
Resumo:
The closed form expression for the radiated power of a half-wave microstrip patch is modified to calculate the impedance bandwidth of a printed dipole. Analyses of cavity backed flared and end-loaded printed dipoles are presented
Resumo:
The performance of circular, rectangular and cross irises for the coupling of microwave power to rectangular waveguide cavity resonators is discussed. For the measurement of complex permittivity of materials using cavity perturbation techniques, rectangular cavities with high Q-factors are required. Compared to the conventional rectangular and circular irises, the cross Iris coupling structure provides very high loaded quality factor for all the resonant frequencies. The proposes cross iris coupling structure enhances the accuracy of complex permittivity measurements.
Resumo:
A novel cavity perturbation technique using coaxial cavity resonators for the measurement of complex permittivity of liquids is presented. The method employs two types of resonators (Resonator I and Resonator II). Resonator I operates in the frequency range 600 MHz-7 GHz and resonator II operates in the frequency range 4 GHz-14 GHz. The introduction of the capillary tube filled with the sample liquid into the coaxial resonator causes shifts in the resonance frequency and loaded Q-factor of the resonator. The shifts in the resonance frequency and loaded Q-factor are used to determine the real and imaginary parts of the complex permittivity of the sample liquid, respectively. Using this technique, the dielectric parameters of water and nitrobenzene are measured. The results are compared with those obtained using other standard methods. The sources of errors are analyzed.
Resumo:
It is found that crystals of molecular nanomagnets exhibit enhanced magnetic relaxation when placed inside a resonant cavity. A strong dependence of the magnetization curve on the geometry of the cavity has been observed, providing indirect evidence of the coherent microwave radiation by the crystals. A similar dependence has been found for a crystal placed between the Fabry-Perot superconducting mirrors.