992 resultados para Heat-capacity
Resumo:
There is still a lack of information on the specific characteristics of DNA-binding proteins from hyperthermophiles. Here we report on the product of the gene orf56 from plasmid pRN1 of the acidophilic and thermophilic archaeon Sulfolobus islandicus. orf56 has not been characterised yet but low sequence similarily to several eubacterial plasmid-encoded genes suggests that this 6.5 kDa protein is a sequence-specific DNA-binding protein. The DNA-binding properties of ORF56, expressed in Escherichia coli, have been investigated by EMSA experiments and by fluorescence anisotropy measurements. Recombinant ORF56 binds to double-stranded DNA, specifically to an inverted repeat located within the promoter of orf56. Binding to this site could down-regulate transcription of the orf56 gene and also of the overlapping orf904 gene, encoding the putative initiator protein of plasmid replication. By gel filtration and chemical crosslinking we have shown that ORF56 is a dimeric protein. Stoichiometric fluorescence anisotropy titrations further indicate that ORF56 binds as a tetramer to the inverted repeat of its target binding site. CD spectroscopy points to a significant increase in ordered secondary structure of ORF56 upon binding DNA. ORF56 binds without apparent cooperativity to its target DNA with a dissociation constant in the nanomolar range. Quantitative analysis of binding isotherms performed at various salt concentrations and at different temperatures indicates that approximately seven ions are released upon complex formation and that complex formation is accompanied by a change in heat capacity of –6.2 kJ/mol. Furthermore, recombinant ORF56 proved to be highly thermostable and is able to bind DNA up to 85°C.
Resumo:
Isothermal titration microcalorimetry is combined with solution-depletion isotherm data to analyze the thermodynamics of binding of the cellulose-binding domain (CBD) from the beta-1,4-(exo)glucanase Cex of Cellulomonas fimi to insoluble bacterial microcrystalline cellulose. Analysis of isothermal titration microcalorimetry data against two putative binding models indicates that the bacterial microcrystalline cellulose surface presents two independent classes of binding sites, with the predominant high-affinity site being characterized by a Langmuir-type Ka of 6.3 (+/-1.4) x 10(7) M-1 and the low-affinity site by a Ka of 1.1 (+/-0.6) x 10(6) M-1. CBDCex binding to either site is exothermic, but is mainly driven by a large positive change in entropy. This differs from protein binding to soluble carbohydrates, which is usually driven by a relatively large exothermic standard enthalpy change for binding. Differential heat capacity changes are large and negative, indicating that sorbent and protein dehydration effects make a dominant contribution to the driving force for binding.
Resumo:
Fluorescence spectroscopy and isothermal titration calorimetry were used to study the thermodynamics of binding of the glucocorticoid receptor DNA-binding domain to four different, but similar, DNA-binding sites. The binding sites are two naturally occurring sites that differ in the composition of one base pair, i.e., an A-T to G-C mutation, and two sites containing chemical intermediates of these base pairs. The calorimetrically determined heat capacity change (Delta C(p)o(obs)) for glucocorticoid receptor DNA-binding domain binding agrees with that calculated for dehydration of solvent-accessible surface areas. A dominating effect of dehydration or solvent reorganization on the thermodynamics is also consistent with an observed linear relationship between observed enthalpy change (Delta Ho(obs)) and observed entropy change (Delta So(obs)) with a slope close to the experimental temperature. Comparisons with structural data allow us to rationalize individual differences between Delta Ho(obs) (and Delta So(obs)) for the four complexes. For instance, we find that the removal of a methyl group at the DNA-protein interface is enthalpically favorable but entropically unfavorable, which is consistent with a replacement by an ordered water molecule.
Resumo:
The effect of temperature from 5 degrees C to 50 degrees C on the retention of dansyl derivatives of amino acids in hydrophobic interaction chromatography (HIC) was investigated by HPLC on three stationary phases. Plots of the logarithmic retention factor against the reciprocal temperature in a wide range were nonlinear, indicative of a large negative heat capacity change associated with retention. By using Kirchoff's relations, the enthalpy, entropy, and heat capacity changes were evaluated from the logarithmic retention factor at various temperatures by fitting the data to a logarithmic equation and a quadratic equation that are based on the invariance and on an inverse square dependence of the heat capacity on temperature, respectively. In the experimental temperature interval, the heat capacity change was found to increase with temperature and could be approximated by the arithmetic average. For HIC retention of a set of dansylamino acids, both enthalpy and entropy changes were positive at low temperatures but negative at high temperatures as described in the literature for other processes based on the hydrophobic effect. The approach presented here shows that chromatographic measurements can be not only a useful adjunct to calorimetry but also an alternative means for the evaluation of thermodynamic parameters.
Resumo:
No presente estudo, amostras policristalinas ricas em Ta e com estequiometrias Ta1-xZrx; x < 0.15; foram preparadas através da mistura apropriada dos elementos metálicos, os quais foram fundidos em forno a arco elétrico sobre uma placa de cobre refrigerada a água e sob atmosfera de argônio de alta pureza. Os padrões de difração de raios-X das ligas, como fundidas (as cast) e tratadas termicamente a 850 °C por 24 h, revelaram a ocorrência de uma estrutura cristalina cúbica de corpo centrada bcc, tipo W, e parâmetros de rede que aumentam suavemente com o aumento do teor de Zr nas ligas. Medidas de susceptibilidade magnética dc, conduzidas nas condições de resfriamento da amostra em campo zero (ZFC) e do resfriamento com o campo magnético aplicado (FC), indicaram que supercondutividade volumétrica é observada abaixo de ~ 5.8, 6.9, 7.0 K em amostras com x = 0.05, 0.08, e 0.10, respectivamente. Essas temperaturas críticas supercondutoras são bastante superiores àquela observada no Ta elementar ~ 4.45 K. Medidas de resistividade elétrica na presença de campos magnéticos aplicados de até 9 T confirmaram a temperatura crítica supercondutora das amostras estudadas. O campo crítico superior Hc2 e o comprimento de coerência E foram estimados a partir dos dados de magnetorresistência. Os valores estimados de Hc2 foram de ~ 0.46, 1.78, 3.85 e 3.97 T, resultando em valores de E ~ 26.0, 13.6, 9.2 e 9.1 nm para as ligas as cast com x = 0.00, 0.05, 0.08 e 0.10, respectivamente. A partir dos dados experimentais do calor específico Cp das ligas, magnitudes estimadas do salto em Cp nas vizinhanças das transições supercondutoras indicaram valores maiores que o previsto pela teoria BCS. Utilizando as equações analíticas derivadas da teoria do acoplamento forte da supercondutividade foi então proposto que o aumento da temperatura de transição supercondutora nas ligas devido a substituição parcial do Ta por Zr está intimamente relacionado ao aumento do acoplamento elétron-fônon, visto que a densidade de estados eletrônicos no nível de Fermi foi estimada ser essencialmente constante através da série Ta1-xZrx com x < 0.10.
Resumo:
The thermal properties of soft and hard wheat grains, cooked in a steam pressure cooker, as a function of cooking temperature and time were investigated by modulated temperature differential scanning calorimetry (MTDSC). Four cooking temperatures (110, 120, 130 and 140 degrees C) and six cooking times (20, 40, 60, 80, 100 and 120 min) for each temperature were studied. It was found that typical non-reversible heat flow thermograms of cooked and uncooked wheat grains consisted of two endothermic baseline shifts localised around 40-50 degrees C and then 60-70 degrees C. The second peaks of non-reversible heat flow thermograms (60-70 degrees C) were associated with starch gelatinisation. The degree of gelatinisation was quantified based on these peaks. In this study, starch was completely gelatinised within 60-80 min for cooking temperatures at 110-120 degrees C and within 20 min for cooking temperatures at 130-140 degrees C. MTDSC detected reversible endothermic baseline shifts in most samples, localised broadly around 48-67 degrees C with changes in heat capacity ranging from 0.02 to 0.06 J/g per degrees C. These reversible endothermic baseline shifts are related to the glass transition, which occurs during starch gelatinisation. Data on the specific heat capacity of the cooked wheat samples are provided. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
GCMC simulations are applied to the adsorption of sub-critical methanol and ethanol on graphitized carbon black at 300 K. The carbon black was modelled both with and without carbonyl functional groups. Large differences are seen between the amounts adsorbed for different carbonyl configurations at low pressure prior to monolayer coverage. Once a monolayer has been formed on the carbon black, the adsorption behaviour is similar between the model surfaces with and without functional groups. Simulation isotherms for the case of low carbonyl concentrations or no carbonyls are qualitatively similar to the few experimental isotherms available in the literature for methanol and ethanol adsorption on highly graphitized carbon black. Isosteric heats and adsorbed phase heat capacities are shown to be very sensitive to carbonyl configurations. A maximum is observed in the adsorbed phase heat capacity of the alcohols for all simulations but is unrealistically high for the case of a plain graphite surface. The addition of carbonyls to the surface greatly reduces this maximum and approaches experimental data with carbonyl concentration as low as 0.09 carbonyls/nm(2).
Resumo:
The preparation and characterization of two new neutral ferric complexes with desolvation-induced discontinuous spin-state transformation above room temperature are reported. The compounds, Fe(Hthpy)(thpy).CH3OH.3H2O (1) and Fe(Hmthpy)(mthpy).2H2O (2), are low-spin (LS) at room temperature and below, whereas their nonsolvated forms are high-spin (HS), exhibiting zero-field splitting. In these complexes, Hthpy, Hmthpy, and thpy, mthpy are the deprotonated forms of pyridoxal thiosemicarbazone and pyridoxal methylthiosemicarbazone, respectively; each is an O,N,S-tridentate ligand. The molecular structures have been determined at 100(1) K using single-crystal X-ray diffraction techniques and resulted in a triclinic system (space group P1) and monoclinic unit cell (space group P21/c) for 1 and 2, respectively. Structures were refined to the final error indices, where RF = 0.0560 for 1 and RF = 0.0522 for 2. The chemical inequivalence of the ligands was clearly established, for the "extra" hydrogen atom on the monodeprotonated ligands (Hthpy, Hmthpy) was found to be bound to the nitrogen of the pyridine ring. The ligands are all of the thiol form; the doubly deprotonated chelates (thpy, mthpy) have C-S bond lengths slightly longer than those of the singly deprotonated forms. There is a three-dimensional network of hydrogen bonds in both compounds. The discontinuous spin-state transformation is accompanied with liberation of solvate molecules. This is evidenced also from DSC analysis. Heat capacity data for the LS and HS phases are tabulated at selected temperatures, the values of the enthalpy and entropy changes connected with the change of spin state were reckoned at DeltaH = 12.5 0.3 kJ mol-1 and DeltaS = 33.3 0.8 J mol-1 K-1, respectively, for 1 and DeltaH = 6.5 0.3 kJ mol-1 and DeltaS = 17.6 0.8 J mol-1 K-1, respectively, for 2
Resumo:
Two-dimensional 'Mercedes Benz' (MB) or BN2D water model (Naim, 1971) is implemented in Molecular Dynamics. It is known that the MB model can capture abnormal properties of real water (high heat capacity, minima of pressure and isothermal compressibility, negative thermal expansion coefficient) (Silverstein et al., 1998). In this work formulas for calculating the thermodynamic, structural and dynamic properties in microcanonical (NVE) and isothermal-isobaric (NPT) ensembles for the model from Molecular Dynamics simulation are derived and verified against known Monte Carlo results. The convergence of the thermodynamic properties and the system's numerical stability are investigated. The results qualitatively reproduce the peculiarities of real water making the model a visually convenient tool that also requires less computational resources, thus allowing simulations of large (hydrodynamic scale) molecular systems. We provide the open source code written in C/C++ for the BN2D water model implementation using Molecular Dynamics.
Resumo:
The present paper offers a methodological approach towards the estimation and definition of enthalpies constituting an energy balance around a fast pyrolysis experiment conducted in a laboratory scale fluid bed with a capacity of 1 kg/ h. Pure N2 was used as fluidization medium at atmospheric pressure and the operating temperature (∼500°C) was adjusted with electrical resistors. The biomass feedstock type that was used was beech wood. An effort was made to achieve a satisfying 92.5% retrieval of products (dry basis mass balance) with the differences mainly attributed to loss of some bio-oil constituents into the quenching medium, ISOPAR™. The chemical enthalpy recovery for bio-oil, char and permanent gases is calculated 64.6%, 14.5% and 7.1%, respectively. All the energy losses from the experimental unit into the environment, namely the pyrolyser, cooling unit etc. are discussed and compared to the heat of fast pyrolysis that was calculated at 1123.5 kJ per kg of beech wood. This only represents 2.4% of the biomass total enthalpy or 6.5% its HHV basis. For the estimation of some important thermo-physical properties such as heat capacity and density, it was found that using data based on the identified compounds from the GC/MS analysis is very close to the reference values despite the small fraction of the bio-oil components detected. The methodology and results can help as a starting point for the proper design of fast pyrolysis experiments, pilot and/or industrial scale plants.
Resumo:
The Sustainability has been evidence in the world today; organizations have sought to be more and more into this philosophy in their processes, whether products or attendance. In the present work were manufactured eco-composites with animal fiber (dog wool) that is currently discarded into the environment without any use. Project phases consisted on the initial treatment of fibers with alkaline solution (NaOH) at 0.05 mols for removal of impurities, developing methods to convert these fibers (reinforcement) blended with castor oil polyurethane (matrix) in eco-composite with different proportions (5%, 10%, 15% and 20%). Fiber properties were evaluated by analysis of SEM, XRD and FTIR. The composites were produced by compression molding with dimensions 30x30x1cm. For characterization of the composites the following tests were performed: mechanical (tensile, compression, shore hardness A) according the standards and testing water absorption, moisture regain and biodegradation. The analysis of thermal properties on fibers and composites were by TG, DSC, thermal conductivity, resistivity, heat capacity and thermal resistance. Analyzing the results of these tests, it was observed that the composite reinforced with 20% showed a better thermal performance between others composites and dimensional stability when compared to commercial thermal insulation. Also is possible to observe a balance in moisture absorption of the composite being shown with its higher absorption rate in this same sample (20%). The micrographs show the fiber interaction regions with polyurethane to fill the empty spaces. In hardness and compression testing can identify that with increasing percentage of the fiber material acquires a greater stiffness by making a higher voltage is used for forming necessary. So by the tests performed in eco-composites, the highest percentage of fiber used as reinforcement in their composition obtained a better performance compared to the remaining eco-composites, reaching values very close to the PU.
Resumo:
The anharmonic phonon properties of SnSe in the Pnma phase were investigated with a combination of experiments and first-principles simulations. Using inelastic neutron scattering (INS) and nuclear resonant inelastic X-ray scattering (NRIXS), we have measured the phonon dispersions and density of states (DOS) and their temperature dependence, which revealed a strong, inhomogeneous shift and broadening of the spectrum on warming. First-principles simulations were performed to rationalize these measurements, and to explain the previously reported anisotropic thermal expansion, in particular the negative thermal expansion within the Sn-Se bilayers. Including the anisotropic strain dependence of the phonon free energy, in addition to the electronic ground state energy, is essential to reproduce the negative thermal expansion. From the phonon DOS obtained with INS and additional calorimetry measurements, we quantify the harmonic, dilational, and anharmonic components of the phonon entropy, heat capacity, and free energy. The origin of the anharmonic phonon thermodynamics is linked to the electronic structure.
Resumo:
The knowledge of thermodynamic high-pressure speed of sound in ionic liquids (ILs) is a crucial way either to study the nature of the molecular interactions, structure and packing effects or to determine other key thermodynamic properties of ILs essential for their applications in any chemical and industrial processes. Herein, we report the speed of sound as a function temperature at pressures up to 101 MPa in four ultrapure ILs: 1-propyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, 1-pentyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, and 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, taking into consideration their relaxation behavior. Additionally, to further improve the reliability of the speed of sound results, the density, isentropic compressibility, and isobaric heat capacity as a function of temperature and pressure are calculated using an acoustic method.
Resumo:
A new method for the evaluation of the efficiency of parabolic trough collectors, called Rapid Test Method, is investigated at the Solar Institut Jülich. The basic concept is to carry out measurements under stagnation conditions. This allows a fast and inexpensive process due to the fact that no working fluid is required. With this approach, the temperature reached by the inner wall of the receiver is assumed to be the stagnation temperature and hence the average temperature inside the collector. This leads to a systematic error which can be rectified through the introduction of a correction factor. A model of the collector is simulated with COMSOL Multipyisics to study the size of the correction factor depending on collector geometry and working conditions. The resulting values are compared with experimental data obtained at a test rig at the Solar Institut Jülich. These results do not match with the simulated ones. Consequentially, it was not pos-sible to verify the model. The reliability of both the model with COMSOL Multiphysics and of the measurements are analysed. The influence of the correction factor on the rapid test method is also studied, as well as the possibility of neglecting it by measuring the receiver’s inner wall temperature where it receives the least amount of solar rays. The last two chapters analyse the specific heat capacity as a function of pressure and tem-perature and present some considerations about the uncertainties on the efficiency curve obtained with the Rapid Test Method.
Resumo:
Transient power dissipation profiles in handheld electronic devices alternate between high and low power states depending on usage. Capacitive thermal management based on phase change materials potentially offers a fan-less thermal management for such transient profiles. However, such capacitive management becomes feasible only if there is a significant enhancement in the enthalpy change per unit volume of the phase change material since existing bulk materials such as paraffin fall short of requirements. In this thesis I propose novel nanostructured thin-film materials that can potentially exhibit significantly enhanced volumetric enthalpy change. Using fundamental thermodynamics of phase transition, calculations regarding the enhancement resulting from superheating in such thin film systems is conducted. Furthermore design of a microfabricated calorimeter to measure such enhancements is explained in detail. This work advances the state-of-art of phase change materials for capacitive cooling of handheld devices.