208 resultados para Hawley


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We determined the stability of infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV) suspended in either fish processing plant effluent blood water (EBW) or culture media and examined the effectiveness of UVC radiation to inactivate IHNV and VHSV suspended in both solutions. Without exposure to UVC, IHNV and VHSV were maintained in 4°C blood water for up to 48 hours without significant reduction in virus titer. However when exposed to UVC radiation using a low pressure mercury vapour lamp collimated beam, IHNV and VHSV were inactivated, and the efficacy of UVC radiation was dependent upon the solution and virus type being treated. A 3-log reduction for VHSV and IHNV in culture media was achieved at 3.28 and 3.84 mJ cm-2, respectively. The UV dose needed for a 3-log reduction of VHSV in EBW was 3.82 mJ cm-2. However, exposure of IHNV in EBW to the maximum UVC dose tested (4.0 mJ cm-2) only led to a 2.26-log-reduction. Factors such as particle size, and possible association of viruses with suspended EBW particulate, were not investigated in this study, but may have contributed to the difference in UVC effectiveness. Future work should emphasize improved filtration methods prior to UV treatment of processing plant EBW at an industrial scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditional views on the metabolic derangements underlying insulin resistance and Type 2 diabetes have been largely “glucocentric” in nature, focusing on the hyperglycemic and/or hyperinsulinemic states that result from impaired glucose tolerance. But in addition to glucose intolerance, there is a coordinated breakdown in lipid dynamics in individuals with insulin resistance, manifested by elevated levels of circulating free fatty acids, diminished rates of lipid oxidation, and excess lipid accumulation in skeletal muscle and/or liver. This review examines the premise that an oversupply and/or accumulation of lipid directly inhibits insulin action on glucose metabolism via changes at the level of substrate competition, enzyme regulation, intracellular signaling, and/or gene transcription. If a breakdown in lipid dynamics is causal in the development of insulin resistance (rather than a coincidental feature resulting from it), it should be possible to demonstrate that interventions that improve lipid homeostasis cause reciprocal changes in insulin sensitivity. Accordingly, the efficacy of aerobic endurance training in human subjects in mediating the association between deranged lipid metabolism and insulin resistance will be examined. It will be demonstrated that aerobic exercise training is a potent and effective primary intervention strategy in the prevention and treatment of individuals with insulin resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims/hypothesis. Our aim was to examine the possible direct relationship of interleukin-6 and TNFα with insulin sensitivity in humans. Methods. We carried out two series of euglycaemic-hyperinsulinaemic clamp experiments. In the first (CLAMP1), skeletal muscle mRNA expression and plasma concentrations of IL-6 and TNFα were examined in patients with Type 2 diabetes (n=6), subjects matched for age (n=6), and young healthy (n=11) control subjects during a 120-min supra-physiological hyperinsulinaemic (40 mU·m -2·min-1) euglycaemic clamp. In the second series of experiments (CLAMP2), patients with Type 2 diabetes (n=6) and subjects matched for age (n=7) were studied during a 240-min high-physiological hyperinsulinaemic (7 mU·m-2·min-1) euglycaemic clamp, during which arterial and venous (femoral and subclavian) blood samples were measured for IL-6 and TNFα flux. Results. In both experiments the glucose infusion rate in the patients was markedly lower than that in the other groups. In CLAMP1, basal skeletal muscle IL-6 and TNFα mRNA were the same in all groups. They were not affected by insulin and they were not related to the glucose infusion rate. In CLAMP2, neither cytokine was released from the arm or leg during insulin stimulation in either group. In both experiments plasma concentrations of these cytokines were similar in the patients and in the control subjects, although in CLAMP1 the young healthy control group had lower (p<0.05) plasma IL-6 concentrations. Using data from all subjects, a strong positive correlation (r=0.85; p<0.00001) was observed between basal plasma IL-6 and BMI. Conversely, a negative relationship (r=-0.345; p<0.05) was found between basal plasma TNFα and BMI, although this was not significant when corrected for BMI. When corrected for BMI, no relationship was observed between either basal plasma IL-6 or TNFα and GIR. Conclusions/interpretation. These data show that the increased circulating IL-6 concentrations seen in patients with Type 2 diabetes are strongly related to fat mass and not insulin responsiveness, and suggest that neither IL-6 nor TNFα are indicative of insulin resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We determined the interaction of diet and exercise-training intensity on membrane phospholipid fatty acid (FA) composition in skeletal muscle from 36 female Sprague-Dawley rats. Animals were randomly divided into one of two dietary conditions: high-carbohydrate (64.0% carbohydrate by energy, n = 18) or high fat (78.1% fat by energy, n = 18). Rats in each diet condition were then allocated to one of three subgroups: control, which performed no exercise training; low-intensity (8 m/min) treadmill run training; or high-intensity (28 m/min) run training. All exercise-trained rats ran 1,000 m/session, 4 days/wk for 8 wk and were killed 48 h after the last training bout. Membrane phospholipids were extracted, and FA composition was determined in the red and white vastus lateralis muscles, Diet exerted a major influence on phospholipid FA composition, with the high-fat diet being associated with a significantly (P < 0.01) elevated ratio of n-6/n-3 FA for both red (2.7-3.2 vs. 1.0-1.1) and white vastus lateralis muscle (2.5-2.9 vs. 1.2). In contrast, alterations in FA composition as a result of either exercise-training protocol were only minor in comparison. We conclude that, under the present experimental conditions, a change in the macronutrient content of the diet was a more potent modulator of skeletal muscle membrane phospholipid FA composition compared with either low- or high-intensity treadmill exercise training.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim/hypothesis. We determined the effect of exercise training on insulin sensitivity and muscle lipids (triglyceride [TGm] and long-chain fatty acyl CoA [LCACoA] concentration) in patients with Type 2 diabetes. Methods. Seven patients with Type 2 diabetes and six healthy control subjects who were matched for age, BMI, % body fat and VO2peak participated in a 3 days per week training program for 8 weeks. Insulin sensitivity was determined pre- and post-training during a 120 min euglycaemic- hyperinsulinaemic clamp and muscle biopsies were obtained before and after each clamp. Oxidative enzyme activities [citrate synthase (CS), β-hydroxy-acyl- CoA (β-HAD)] and TGm were determined from basal muscle samples pre- and post training, while total LCACoA content was measured in samples obtained before and after insulin-stimulation, pre- and post training. Results. The training-induced increase in VO2peak (∼20%, p<0.01) was similar in both groups. Compared with control subjects, insulin sensitivity was lower in the diabetic patients before and after training (∼60%; p<0.05), but was increased to the same extent in both groups with training (∼30%; p<0.01). TGm was increased in patients with Type 2 diabetes (170%; p<0.05) before, but was normalized to levels observed in control subjects after training. Basal LCACoA content was similar between groups and was unaltered by training. Insulin-stimulation had no detectable effect on LCACoA content. CS and β-HAD activity were increased to the same extent in both groups in response to training (p<0.001). Conclusion/interpretation. We conclude that the enhanced insulin sensitivity observed after short-term exercise training was associated with a marked decrease in TGm content in patients with Type 2 diabetes. However, despite the normalization of TGm to levels observed in healthy individuals, insulin resistance was not completely reversed in the diabetic patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We determined whole-body insulin sensitivity, long-chain fatty acyl coenzyme A (LCACoA) content, skeletal muscle triglyceride (TGm) concentration, fatty acid transporter protein content, and oxidative enzyme activity in eight patients with type 2 diabetes (TYPE 2); six healthy control subjects matched for age (OLD), body mass index, percentage of body fat, and maximum pulmonary O2 uptake; nine well-trained athletes (TRAINED); and four age-matched controls (YOUNG). Muscle biopsies from the vastus lateralis were taken before and after a 2-h euglycemic-hyperinsulinemic clamp. Oxidative enzyme activities, fatty acid transporters (FAT/CD36 and FABPpm), and TGm were measured from basal muscle samples, and total LCACoA content was determined before and after insulin stimulation. Whole-body insulin-stimulated glucose uptake was lower in TYPE 2 (P < 0.05) than in OLD, YOUNG, and TRAINED. TGm was elevated in TYPE 2 compared with all other groups (P < 0.05). However, both basal and insulin-stimulated skeletal muscle LCACoA content were similar. Basal citrate synthase activity was higher in TRAINED (P < 0.01), whereas β-hydroxyacyl CoA dehydrogenase activity was higher in TRAINED compared with TYPE 2 and OLD. There was a significant relationship between the oxidative capacity of skeletal muscle and insulin sensitivity (citrate synthase, r = 0.71, P < 0.001; β-hydroxyacyl CoA dehydrogenase, r = 0.61, P = 0.001). No differences were found in FAT/CD36 protein content between groups. In contrast, FABPpm protein was lower in OLD compared with TYPE 2 and YOUNG (P < 0.05). In conclusion, despite markedly elevated skeletal muscle TGm in type 2 diabetic patients and strikingly different levels of whole-body glucose disposal, both basal and insulin-stimulated LCACoA content were similar across groups. Furthermore, skeletal muscle oxidative capacity was a better predictor of insulin sensitivity than either TGm concentration or long-chain fatty acyl CoA content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To examine whether genes associated with cellular defense against oxidative stress are associated with insulin sensitivity, patients with type 2 diabetes (n = 7) and age-matched (n = 5) and young (n = 9) control subjects underwent a euglycemic-hyperinsulinemic clamp for 120 min. Muscle samples were obtained before and after the clamp and analyzed for heat shock protein (HSP)72 and heme oxygenase (HO)-1 mRNA, intramuscular triglyceride content, and the maximal activities of β-hyroxyacyl-CoA dehydrogenase (β-HAD) and citrate synthase (CS). Basal expression of both HSP72 and HO-1 mRNA were lower (P < 0.05) by 33 and 55%, respectively, when comparing diabetic patients with age-matched and young control subjects, with no differences between the latter groups. Both basal HSP72 (r = 0.75, P < 0.001) and HO-1 (r = 0.50, P < 0.05) mRNA expression correlated with the glucose infusion rate during the clamp. Significant correlations were also observed between HSP72 mRNA and both β-HAD (r = 0.61, P < 0.01) and CS (r = 0.65, P < 0.01). HSP72 mRNA was induced (P < 0.05) by the clamp in all groups. Although HO-1 mRNA was unaffected by the clamp in both the young and age-matched control subjects, it was increased (P < 0.05) ∼70-fold in the diabetic patients after the clamp. These data demonstrate that genes involved in providing cellular protection against oxidative stress are defective in patients with type 2 diabetes and correlate with insulin-stimulated glucose disposal and markers of muscle oxidative capacity. The data provide new evidence that the pathogenesis of type 2 diabetes involves perturbations to the antioxidant defense mechanism within skeletal muscle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Competitive athletes completed two studies of 2-h steady-state (SS) cycling at 70% peak O2 uptake followed by 7 kJ/kg time trial (TT) with carbohydrate (CHO) intake before (2 g/kg) and during (6% CHO drink) exercise. In Study A, 12 subjects received either 6 mg/kg caffeine 1 h preexercise (Precaf), 6 × 1 mg/kg caffeine every 20 min throughout SS (Durcaf), 2 × 5 ml/kg Coca-Cola between 100 and 120 min SS and during TT (Coke), or placebo. Improvements in TT were as follows: Precaf, 3.4% (0.2-6.5%, 95% confidence interval); Durcaf, 3.1% (-0.1-6.5%); and Coke, 3.1% (-0.2-6.2%). In Study B, eight subjects received 3 × 5 ml/kg of different cola drinks during the last 40 min of SS and TT: decaffeinated, 6% CHO (control); caffeinated, 6% CHO; decaffeinated, 11% CHO; and caffeinated, 11% CHO (Coke). Coke enhanced TT by 3.3% (0.8-5.9%), with all trials showing 2.2% TT enhancement (0.5-3.8%; P < 0.05) due to caffeine. Overall, 1) 6 mg/kg caffeine enhanced TT performance independent of timing of intake and 2) replacing sports drink with Coca-Cola during the latter stages of exercise was equally effective in enhancing endurance performance, primarily due to low intake of caffeine (∼1.5 mg/kg).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. The effect of a chronic programme of either low- or moderate-to-high-intensity treadmill running on the activation of the extracellular-signal regulated protein kinase (ERK1/2) and the p38 mitogen-activated protein kinase (MAPK) pathways was determined in rat muscle. 2. Sprague-Dawley rats were assigned to one of three groups: (i) sedentary (NT; n = 8); (ii) low-intensity training (8 m/min; LIT; n = 16); and (iii) moderate-to-high-intensity training (28 m/min; HIT;n = 16). The training regimens were planned so that animals covered the same distance and had similar glycogen utilization for both LIT and HIT exercise sessions. 3. A single bout of LIT or HIT following 8 weeks of training led to a twofold increase in the phosphorylation of ERK1/2 (P = 0.048) and a two- to threefold increase in p38 MAPK (P = 0.005). Extracellular signal-regulated kinase 1/2 phosphorylation in muscle sampled 48 h after the last exercise bout was similar to sedentary values, while p38 MAPK phosphorylation was 70-80% lower than sedentary. One bout of LIT or HIT increased total ERK1/2 and p38 MAPK expression, with the magnitude of this increase being independent of prior exercise intensity or duration. Extracellular signal-regulated kinase 1/2 expression was increased three- to fourfold in muscle sampled 48 h after the last exercise bout irrespective of the prior training programme (P = 0.027), but p38 MAPK expression was approximately 90% lower than sedentary values. 4. In conclusion, exercise-training of different intensities/durations results in selective postexercise activation of intracellular signalling pathways, which may be one mechanism regulating specific adaptations induced by diverse training programmes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We determined the effect of an acute bout of swimming (8 × 30 min) followed by either carbohydrate administration (0.5 mg/g glucose ip and ad libitum access to chow; CHO) or fasting (Fast) on postexercise glycogen resynthesis in soleus muscle and liver from female lean (ZL) and obese insulin-resistant (ZO) Zucker rats. Resting soleus muscle glycogen concentration ([glycogen]) was similar between genotypes and was reduced by 73 (ZL) and 63% (ZO) after exercise (P < 0.05). Liver [glycogen] at rest was greater in ZO than ZL (334 ± 31 vs. 247 ± 16 μmol/g wet wt; P < 0.01) and fell by 44 and 94% after exercise (P < 0.05). The fractional activity of glycogen synthase (active/total) increased immediately after exercise (from 0.22 ± 0.05 and 0.32 ± 0.04 to 0.63 ± 0.08 vs. 0.57 ± 0.05; P < 0.01 for ZL and ZO rats, respectively) and remained elevated above resting values after 30 min of recovery. During this time, muscle [glycogen] in ZO increased 68% with CHO (P < 0.05) but did not change in Fast. Muscle [glycogen] was unchanged in ZL from postexercise values after both treatments. After 6 h recovery, GLUT-4 protein concentration was increased above resting levels by a similar extent for both genotypes in both fasted (∼45%) and CHO-supplemented (∼115%) rats. Accordingly, during this time CHO refeeding resulted in supercompensation in both genotypes (68% vs. 44% for ZL and ZO). With CHO, liver [glycogen] was restored to resting levels in ZL but remained at postexercise values for ZO after both treatments. We conclude that the increased glucose availability with carbohydrate refeeding after glycogen-depleting exercise resulted in glycogen supercompensation, even in the face of muscle insulin-resistance.